
GPU-FPX and FTTN
Xinyi Li* , Ganesh Gopalakrishnan**

 * Postdoctoral Fellow, Pacific Northwest National Laboratory, Richland, WA
xinyinicole.com

** Professor, Kahlert School of Computing, University of Utah, Salt Lake City, UT
https://www.cs.utah.edu/~ganesh

Presenters

Prof. Ganesh Gopalakrishnan

Professor,
Kahlert School of Computing,
University of Utah, Salt Lake City, UT

https://www.cs.utah.edu/~ganesh

Dr. Xinyi Li

Postdoctoral Associate,
Pacific Northwest National Laboratory,
Richland, WA

https://xinyinicole.com

https://www.cs.utah.edu/~ganesh
https://xinyinicole.com

TOOLS PRESENTED :
GPU-FPX: For detecting Floating-Point Exceptions
FTTN: To discover the numerical behavior of Tensor Cores

● FP Exceptions
○ Cause non-determinism - even serious accidents
○ May be masked, resulting in users not seeing the effects
○ Numerical solutions with NaNs are useless
○ Exceptions can change with platforms
○ Exception-checking support is limited in Heterogeneous Hardware
○ Closed-source libraries make the problem worse
○ We provide the first usable binary-instrumentation framework for NVIDIA GPUs
○ Long term: Manufacturer Help is essential

● FTTN
○ Important to know the "HW substrate" which increasingly uses Tensor-Cores
○ These are poorly documented
○ In the short-term, we must experimentally discover what the behaviors are
○ We provide a set of tests to reveal many of the important Tensor-Core behaviors
○ Long term: Manufacturer Help is Essential

NaN … how perhaps born, how it flows, how likely killed
(0/0) == 0
?

Predicate compares NaN to 0 and that is FALSE

42

42 NaN

F T

 P K G P

NAN
born

NAN
propagates

NAN
propagates

NAN
killed

No need to put
NAN-Checker here !!

Must put NAN-Checker
here !!

No need to put
NAN-Checker here !!

GPU-FPX Tool Efficiently Detects
Exceptions in NVIDIA GPU Binaries

● HPDC 2023 paper published on new tool GPU-FPX released at https://github.com/LLNL/GPU-FPX
● Found 27 previously unknown exceptions detected across 151 programs on their own data sets

○ Some repairs also identified based on tool feedback

(0/0) == 0
?

predicate

42

42 NaN

F T

X. Li, I. Laguna, B. Fang, K. Swirydowicz, A. Li and G. Gopalakrishnan, "Design and
Evaluation of GPU-FPX: A Low-Overhead tool for Floating-Point Exception
Detection in NVIDIA GPUs," HPDC '23: Proceedings of the 32nd International
Symposium on High-Performance Parallel and Distributed Computing, August 2023,
Pages 59–71, https://doi.org/10.1145/3588195.3592991

https://github.com/LLNL/GPU-FPX

Non-Deterministic Behavior: This is incorrect in FP

GPU-FPX
A Low-Overhead tool for Floating-Point Exception Detection in

NVIDIA GPUs

7

GPU-FPX

y = x/0

Programs may not run correctly

y = x/0

output

NaN, INF result

Just not correct
answer

All these may stem from a simple
floating-point exception

Floating point exceptions

Resulting in NaN

Invalid
Operations

Resulting in NaN,
INF

Division
 by Zero

Resulting in
 INF

Overflow

Resulting in
Subnormal

Underflow

sqrt(-1) 0/0, 3/0 power(2,2000) 1.0e-308 / 1.0e308

y = x/0

Hardware exception traps can be
enabled on CPUs

Resulting in NaN

Invalid
Operations

Resulting in NaN,
INF

Division
 by Zero

Resulting in
 INF

Overflow

Resulting in
Subnormal

Underflow

sqrt(-1) 0/0, 3/0 power(2,2000) 1.0e-308 / 1.0e308

y = x/0

… but not on NVIDIA GPUs!!

Resulting in NaN

Invalid
Operations

Resulting in NaN,
INF

Division
 by Zero

Resulting in
 INF

Overflow

Resulting in
Subnormal

Underflow

sqrt(-1) 0/0, 3/0 power(2,2000) 1.0e-308 / 1.0e308

y = x/0

… but not on NVIDIA GPUs!!

Resulting in NaN

Invalid
Operations

Resulting in NaN,
INF

Division
 by Zero

Resulting in
 INF

Overflow

Resulting in
Subnormal

Underflow

sqrt(-1) 0/0, 3/0 power(2,2000) 1.0e-308 / 1.0e308

y = x/0

requiring exceptions to be detected by examining the results in software

Programs may not run correctly

y = x/0

output

NaN, INF result

Just not correct
answer

All these may stem from a simple
floating-point exception

Show-Stopper
Floating-Point Exceptions on GPUs

y = x/0

A x = b
A is a near singular matrix

Run on GPU

No warning raised

 Loss became NaN !!

If A < B then P else Q

If Either A or B is NaN

then Q is executed
 P is ignored …
 P may contain a NaN too

User has no tools to root-cause and fix!

Need tool to detect and analyze Floating-point exceptions

y = x/0

Need tool to detect and analyze Floating-point exceptions

y = x/0

GPU-FPX

GPU-FPX: 3 features

18

GPU-FPX

At Binary Level

Fast

Helps Diagnose

Important libraries are closed
source. e.g. cuSolver

Compiler may change the
floating-point behavior.
e.g. -fast-math flag

GPU-FPX: 2 components

19

GPU-FPX

Detector
Pinpoints exception-generating
locations across all kernels

Analyzer
Reports how exceptions flow
within one instruction

GPU-FPX: 1 simple
demo

20

GPU-FPX

21

GPU-FPX
__global__ void dot_prod(float *x, float *y, int size)

{

float d;

for (int i=0; i < size; ++i)

{

float tmp;

// division by zero, produce NaN

tmp = x[i]*y[i] / 0

d += tmp; // d=NaN

}

int tid = blockIdx.x * blockDim.x + threadIdx.x;

if (tid == 0) {

printf("dot: %f\n", d);

}

}

22

GPU-FPX
__global__ void dot_prod(float *x, float *y, int size)

{

float d;

for (int i=0; i < size; ++i)

{

float tmp;

// division by zero, produce NaN

tmp = x[i]*y[i] / 0

d += tmp; // d=NaN

}

int tid = blockIdx.x * blockDim.x + threadIdx.x;

if (tid == 0) {

printf("dot: %f\n", d);

}

}

LD_PRELOAD=detector.so ./dot-prod

Use Detector

23

GPU-FPX
__global__ void dot_prod(float *x, float *y, int size)

{

float d;

for (int i=0; i < size; ++i)

{

float tmp;

// division by zero, produce NaN

tmp = x[i]*y[i] / 0

d += tmp; // d=NaN

}

int tid = blockIdx.x * blockDim.x + threadIdx.x;

if (tid == 0) {

printf("dot: %f\n", d);

}

}

LD_PRELOAD=detector.so ./dot-prod

Use Detector

#GPU-FPX LOC-EXCEP INFO: in kernel [dot_prod], DIV0 found @ dot-prod.cu:13 [FP32]
#GPU-FPX LOC-EXCEP INFO: in kernel [dot_prod], NaN found @ dot-prod.cu:13 [FP32]
dot: nan
#GPU-FPX LOC-EXCEP INFO: in kernel [dot_prod], NaN found @ dot-prod.cu:21 [FP32]
#GPU-FPX LOC-EXCEP INFO: in kernel [dot_prod], NaN found @ dot-prod.cu:14 [FP32]

24

GPU-FPX
__global__ void dot_prod(float *x, float *y, int size)

{

float d;

for (int i=0; i < size; ++i)

{

float tmp;

// division by zero, produce NaN

tmp = x[i]*y[i] / 0

d += tmp; // d=NaN

}

int tid = blockIdx.x * blockDim.x + threadIdx.x;

if (tid == 0) {

printf("dot: %f\n", d);

}

}

LD_PRELOAD=detector.so ./dot-prod

Use Detector

#GPU-FPX LOC-EXCEP INFO: in kernel [dot_prod], DIV0 found @
dot-prod.cu:13 [FP32]
#GPU-FPX LOC-EXCEP INFO: in kernel [dot_prod], NaN found @ dot-prod.cu:13 [FP32]
dot: nan
#GPU-FPX LOC-EXCEP INFO: in kernel [dot_prod], NaN found @ dot-prod.cu:21 [FP32]
#GPU-FPX LOC-EXCEP INFO: in kernel [dot_prod], NaN found @ dot-prod.cu:14 [FP32]

25

GPU-FPX
__global__ void dot_prod(float *x, float *y, int size)

{

float d;

for (int i=0; i < size; ++i)

{

float tmp;

// division by zero, produce NaN

tmp = x[i]*y[i] / 0

d += tmp; // d=NaN

}

int tid = blockIdx.x * blockDim.x + threadIdx.x;

if (tid == 0) {

printf("dot: %f\n", d);

}

}

Using the Analyzer
LD_PRELOAD=analyzer.so ./dot-prod

GPU-FPX-ANA APPEAR : INF appear at the destination @ dot-prod.cu:13 Instruction: MUFU.RCP
R0, R10 ; We have 2 registers in total. Register 0 is INF. Register 1 is VAL.
#GPU-FPX-ANA APPEAR : NaN appear at the destination @ dot-prod.cu:13 Instruction: FFMA
R9, -R10, R0, 1 ; We have 3 registers in total. Register 0 is NaN. Register 1 is VAL.
Register 2 is INF.
#GPU-FPX-ANA PROPAGATION: …

26

GPU-FPX
__global__ void dot_prod(float *x, float *y, int size)

{

float d;

for (int i=0; i < size; ++i)

{

float tmp;

// division by zero, produce NaN

tmp = x[i]*y[i] / 0

d += tmp; // d=NaN

}

int tid = blockIdx.x * blockDim.x + threadIdx.x;

if (tid == 0) {

printf("dot: %f\n", d);

}

}

Using the Analyzer
LD_PRELOAD=analyzer.so ./dot-prod

#GPU-FPX-ANA APPEAR : INF appear at the destination @ dot-prod.cu:13 Instruction:
MUFU.RCP R0, R10 ; We have 2 registers in total. Register 0 is INF. Register 1 is
VAL.
#GPU-FPX-ANA APPEAR : NaN appear at the destination @ dot-prod.cu:13 Instruction: FFMA
R9, -R10, R0, 1 ; We have 3 registers in total. Register 0 is NaN. Register 1 is VAL.
Register 2 is INF.

#GPU-FPX-ANA PROPAGATION: …

Next step
Low or mixed-precision exceptions detect and analysis

- AI/ML workload are using lower precision
- Libraries are developed to use mixed precision

- torch.autocast
- Current hardware vendor are developed

low-precision unit
- NVIDIA tensor cores, AMD matrix cores

- More exceptional issues about using mixed
precision

Next step
Low or mixed-precision exceptions detect and analysis

- AI/ML workload are using lower precision
- Libraries are developed to use mixed precision

- torch.autocast
- Current hardware vendor are developed

low-precision unit
- NVIDIA tensor cores, AMD matrix cores

- More exceptional issues about using mixed
precision

We studied
their
numerical
behaviors

Will cover in the next half

Nowadays GPUs are always equipped with special hardware for
mixed-precision matrix multiplication D = A*B+C

Tensor
core Matrix core

Matrix Accelerators

Run on

Part 2:
GPU-FPX in practice

Debugging a SRU open issue

Problem description
- Link: https://github.com/asappresearch/sru/issues/193

https://github.com/asappresearch/sru/issues/193

Problem description
- Link: https://github.com/asappresearch/sru/issues/193

https://github.com/asappresearch/sru/issues/193

Use Detector

Use DetectorClosed-source library

Use DetectorClosed-source library

Not clear how to fix it

Use Analyzer

Speedup by enabling necessary kernels

First and most exceptions happened in this kernel, so
we can limit our instrumentation in this kernel

Analysis

Analysis

NaN seems already exists
within the initial data!

Analysis
This creates a tensor with uninitialized data on GPU
memory.

Fix
This creates a tensor with uninitialized data on GPU
memory.

torch.randn(20,32,128).cuda()

Matrix Accelerators

Nowadays GPUs are always equipped with special hardware for
mixed-precision matrix multiplication D = A*B+C

Tensor
core Matrix core

Matrix Accelerators

Run on

Matrix Accelerators Issues

Nowadays GPUs are always equipped with special hardware for
(mixed-precision) matrix multiplication D = A*B+C

A specific hardware to speed up
matrix multiplication D=A*B+C

Mixed-precision computation

Block-wise computation

Lack of numerical
standardization!

Matrix Accelerators

Numerical
inconsistency

+-1✕ ✕

210 -2-2 -2-3 … 210

2-3

…

1✕
220 220 …

Two 213 ✕ 213 matrix doing the matrix multiplication

-2-2 -2-3

… same as the
first row

… same
as the
first
column

… All 220

D = -1 ✕ A ✕ B + 1 ✕ C

D =
Each element in D should

be the same

NVIDIA
V100

NVIDIA
A100

NVIDIA
H100

AMD
MI100

AMD
MI250 CPU

0 0 191.875 255.875 0 0

Dij = -(2
10 * 210 - Σ2-2 * 2-3- Σ2-3 * 2-3) + 220 = 27 + 26 -2-6 ≈ 191.99218

A numerical inconsistent example caused by matrix accelerators

Run on different
hardware (with matrix
accelerators

Numerical behaviors we want to test

Rounding
mode

Support for
subnormals

Extra bits?

Rounding direction?

Block-FMA
features

When to round and
normalization

Width of FMA block

FTTN
Feature-Targeted

Testing

Subnormal supported

Extra bits and rounding mode

Extra bits and rounding mode

Extra bits and rounding mode

Blocked FMA feature

Blocked FMA feature

Blocked FMA feature

Blocked FMA feature

Thanks!
1. Questions?
2. Any applications you want us to help?
3. What features you want to add?

Try GPU-FPX! Try FTTN!

Thanks!

