
FloatGuard: Efficient Whole-Program Detection
of Floating-Point Exceptions in AMD GPUs

Dolores Miao (UC Davis)
Ignacio Laguna (LLNL)
Cindy Rubio-González (UC Davis)

Tutorial @ SC25
St. Louis, MO, USA, 11.16.2025

47

AMD GPUs Gaining Traction in HPC

● Supercomputers like El Capitan and Frontier use AMD GPUs
○

● AMD GPU computing toolchain is maturing: ROCm
○ HIP kernel language with Clang compiler
○ Debugging tools such as ROCgdb

● Arising need in debugging numerical code

48

Automated FP Exception Detection

1. Dinda et al. 2020. Spying on the Floating Point Behavior of Existing, Unmodified Scientific Applications. In HPDC. ACM, 5–16.
2. Laguna et al. 2022. FPChecker: Floating-Point Exception Detection Tool and Benchmark for Parallel and Distributed HPC. In IISWC. IEEE, 39–50.
3. Li et al. 2023. Design and Evaluation of GPU-FPX: A Low-Overhead tool for Floating-Point Exception Detection in NVIDIA GPUs. In HPDC. ACM, 59–71. 49

Platform FP Exception
Hardware

Tools /
Approach Mechanism & Notes

CPUs (x86-64) ✅registers and traps FPSpy [1] /
FPVM

Uses %mxcsr and signal-based trap-and-emulate to track
problems in unmodified binaries.

NVIDIA GPUs
(CUDA) ❌ No hardware FPChecker [2],

GPU-FPX [3] Compiler or binary instrumentation; high overhead

AMD GPUs ✅registers and traps ??? (How can we leverage AMD’s exception registers to
natively track exceptions in GPU kernels?)

Floating-Point Exceptions on AMD GPUs

Exception Type Abbr. Trap Mode Descriptions

invalid operation NAN 0 12 NaN as result, i.e. 0/0

input denormal IN_SUB 1 13 Subnormal number in operand

divide by zero DIV0 2 14 Division by zero, i.e. 10.0/0.0

overflow INF 3 15 Result outside of range expressed by FP type

underflow OUT_SUB 4 16 Subnormal number in result

inexact 5 5 17 Result not precisely represented, rounding is involved

int. divide by zero INT_DIV0 6 18 Integer division by zero, i.e. 10/0

Exception types
not in IEEE 754

50

Floating-Point Exception Registers on AMD GPUs

● Mode register
○ Individually enable/disable types of exceptions
○ Reset at the beginning of every GPU kernel

● Trap status register
○ Accumulate exception state after they are encountered
○ Can be cleared at any point

51

Live Demo 1 - Detecting FP Exceptions Manually

52

Prerequisite: AMD GPU + ROCm environment

1. Compile sample program
2. Run ROCgdb with the sample program; no exceptions
3. Use “b [kernel name]” to add breakpoints, then run the program again
4. When program is stopped, change mode register value
5. Exception occurs

Challenges using FP Exception Registers

What can we conclude from our demo?
1.Exception trapping is off by default in kernels

Need to manually enable in each kernel thread

2.Program counter after a trap may be delayed
3.Program state unrecoverable with trapped exception

Difficult to track exception after the first

Conclusion: debugging manually is too time-consuming and thus calls for an
automated approach

53

FloatGuard: first tool to detect floating-point exceptions on
AMD GPUs

54

main.c
kernel_1.c
kernel_2.c
...

FloatGuard
x1th inst.: kernel_1.c:y1
x2th inst.: kernel_1.c:y2
x3th inst.: kernel_2.c:y3
...

main 0.1 0.2

FloatGuard Workflow

55

Main steps:

● Compile source files to assembly (*.s) instead of
objects (*.o)

● Inject instrumentation code into assembly
● Link to generate executables with code

instrumentation

Our method has several advantages:

● Inject code after all optimization passes in both
frontend and backend are finished

● Compiler agnostic
● Only requires changing compiler in build scripts

56

Code Instrumentation

● At the beginning of kernels, enable exceptions
● Around code locations with previously reported exception

○ Disable before entering, enable after exiting

enable exception; set to 0x2F0 to disable exception
s_mov_b32 s31, 0x5F2F0
s_setreg_b32 hwreg(HW_REG_MODE), s31
clear trap status flags to report exception types correctly
s_setreg_imm32_b32 hwreg(HW_REG_TRAPSTS, 0, 7), 0

57

Code Instrumentation - Assembly Injection

● Run program until exception occur,
record location

● Rerun assembly code instrumentation
with updated info

● Link and run program again
● Rinse and repeat until no further

exception is triggered

58

Testing Framework

Live Demo 2 - Running FloatGuard on Sample

Prerequisite: AMD GPU + Linux + ROCm environment (rocm + rocm-llvm-dev)
Clone code from here: https://github.com/LLNL/FloatGuard (sc25 branch)

1. Go to sample directory
2. Run: python3 [FloatGuard dir]/gdb_script/time_measure.py
3. Inspect results in the results/ directory

59

https://github.com/LLNL/FloatGuard

Setup Your Code for FloatGuard

● Replace the compiler in your Makefile with our wrapper script

HIPCC = [FloatGuard Directory]/gdb_script/hipcc_wrapper.sh

● Some Makefile projects are small and only has one source file, and one
command to compile and link the program. For those, make sure your compile
and link commands are separate:

${HIPCC} ${HIPFLAGS} -c main.cpp -o main.o
${HIPCC} ${HIPFLAGS} -c other.cpp -o other.o
${HIPCC} ${LINKFLAGS} main.o other.o -o main

60

Setup Your Code for FloatGuard

● For CMake projects, replace the compiler in CMakeLists.txt

set(CMAKE_CXX_COMPILER [FloatGuard Dir]/gdb_script/hipcc_wrapper.sh)

● Create a setup.ini file in the root directory of your code project. For CMake
projects, put the CMake command that creates project and compile here.

[DEFAULT]
compile = # the command line to compile the executable
run = # the command line to run the executable
clean = # the command line to clean the executable

61

Live Demo 3 - Running FloatGuard on Benchmarks

Prerequisite: AMD GPU + Linux + ROCm environment (rocm + rocm-llvm-dev)

1. Go to [benchmark directory]
2. Run: python3 [FloatGuard dir]/gdb_script/time_measure.py
3. Inspect results in the results/ directory

Benchmark shown:
● rodinia/cfd
● PolyBench-ACC/lu

62

Thank you!

Correspondence: Dolores Miao (wjmiao@ucdavis.edu /
captainmieu@gmail.com)
Code repository: https://github.com/LLNL/FloatGuard

Q
R code for CV
I am currently seeking postdoc/
academic/industry research
opportunities—feel free to connect!

63

mailto:wjmiao@ucdavis.edu
mailto:captainmieu@gmail.com
https://github.com/LLNL/FloatGuard

