FloatGuard: Efficient Whole-Program Detection
of Floating-Point Exceptions in AMD GPUs

Dolores Miao (UC Davis)
Ignacio Laguna (LLNL)
Cindy Rubio-Gonzalez (UC Davis)

Tutorial @ SC25
St. Louis, MO, USA, 11.16.2025

47

AMD GPUs Gaining Traction in HPC

e Supercomputers like El Capitan and Frontier use AMD GPUs [l @
L CRRITAN

e AMD GPU computing toolchain is maturing: ROCm
o HIP kernel language with Clang compiler

o Debugging tools such as ROCgdb
AMDA1

e Arising need in debugging numerical code RO c

48

Automated FP Exception Detection

Platform e LTS Mechanism & Notes
Hardware Approach
3 . FPSpy [1]/ Uses %mxcsr and signal-based trap-and-emulate to track
CPUs (x86-64) | [“registers and traps | Loy problems in unmodified binaries.
NVIDIA GPUs FPChecker [2], : : : .
(CUDA) > No hardware GPU-FPX [3] Compiler or binary instrumentation; high overhead
3 . (How can we leverage AMD’s exception registers to
?2?7?
AMD GPUs [registers and traps | 2?7 natively track exceptions in GPU kernels?)

1. Dinda et al. 2020. Spying on the Floating Point Behavior of Existing, Unmodified Scientific Applications. In HPDC. ACM, 5-16.
2. Lagunaet al. 2022. FPChecker: Floating-Point Exception Detection Tool and Benchmark for Parallel and Distributed HPC. In IISWC. IEEE, 39-50.
3. Lietal.2023. Design and Evaluation of GPU-FPX: A Low-Overhead tool for Floating-Point Exception Detection in NVIDIA GPUs. In HPDC. ACM, 59-71. 49

Floating-Point Exceptions on AMD GPUs

Exception types
not in IEEE 754

Exception Type Abbr. | Trap| Mode| Descriptions
invalid operation NAN 0 12 |NaN as result, i.e. 0/0
input denormal IN_SUB 1 13 Subnormal number in operand

divide by zero

DIVO

N

14

Division by zero, i.e. 10.0/0.0

overflow INF 3 15 |Result outside of range expressed by FP type
underflow OuUT_SuB| 4 16 |Subnormal number in result

inexact 5 5 17 |Result not precisely represented, rounding is involved
int. divide by zero INT_DIVO 6 18 |Integer division by zero, i.e. 10/0

50

Floating-Point Exception Registers on AMD GPUs

e Mode register
o Individually enable/disable types of exceptions
o Reset at the beginning of every GPU kernel

e T[rap status register
o Accumulate exception state after they are encountered
o Can be cleared at any point

51

Live Demo 1 - Detecting FP Exceptions Manually

Prerequisite: AMD GPU + ROCm environment

Compile sample program

Run ROCgdb with the sample program; no exceptions

Use “b [kernel name]” to add breakpoints, then run the program again
When program is stopped, change mode register value

Exception occurs

ok owbd -~

52

Challenges using FP Exception Registers

What can we conclude from our demo?

1.Exception trapping is off by default in kernels
Need to manually enable in each kernel thread

2.Program counter after a trap may be delayed

3.Program state unrecoverable with trapped exception
Difficult to track exception after the first

Conclusion: debugging manually is too time-consuming and thus calls for an
automated approach

53

FloatGuard: first tool to detect floating-point exceptions on

AMD GPUs

main.c
kernel_1.c
kernel_2.c

main 0.1 0.2

FloatGuard

x1th inst.: kernel_1.c:y1
x2th inst.: kernel_1.c:y2
x3th inst.: kernel_2.c:y3

54

FloatGuard Workflow

Exception Location List

yd

xth instruction: kernel_1.c:x
Yes i s :
(update) yth instruction: kernel_1.czy

Tnstrumented code

main.c main.c]
kernel_1.cu Compiler Wrapper| | kernel_1.s Compiler Wrapper ' | Testing ¢
kernel_2.cu (Assembler) [|kemel_2.s (Code Injection & main.out > Eramework

Linker) A

xth instruction: kernel_1.c:x

l o o Involves debugger (ROCgdb) No yth instruction: kernel_1.c:y
Pvihon-driven Intrumentation (terminate) | zth instruction: kernel_1.c:z

Final Exception Location List

Code Instrumentation

Main steps:

e Compile source files to assembly (*.s) instead of
objects (*.0)

® Inject instrumentation code into assembly

e Link to generate executables with code
instrumentation

Our method has several advantages:

® Inject code after all optimization passes in both
frontend and backend are finished

e Compiler agnostic

e Only requires changing compiler in build scripts

main.c
kernel_1.cu
kernel_2.cu

[

Compiler Wrapper|
(Assembler)

Python-drive

| kernel_2.s

main.c
kernel_1.s

Intrumentation —|

Compiler Wrapper|

| (Code Injection &

Linker)

I

Instrumented code

L >

main.out

—d

Invc

56

Code Instrumentation - Assembly Injection

At the beginning of kernels, enable exceptions

Around code locations with previously reported exception
o Disable before entering, enable after exiting

enable exception; set to Ox2FO to disable exception

s _mov_b32 s31, Ox5F2F0

s _setreg b32 hwreg(HW REG MODE), s31

clear trap status flags to report exception types correctly
s _setreg imm32 b32 hwreg(HW REG_TRAPSTS, 0, 7), ©

57

Testing Framework

e Run program until exception occur,
record location

e Rerun assembly code instrumentation
with updated info m— 1" o e

e Link and run program again T
Rinse and repeat until no further — Involves debugger (ROCgdt) Mo
exception is triggered

Exception Location List

xth instruction: kernel_1.c:x
yth instruction: kernel_1.cy

xth instruction: kernel_1.c:x
yth instruction: kernel_1.c:y
zth instruction: kernel_1.c:z

Final Exception Location List

58

Live Demo 2 - Running FloatGuard on Sample

Prerequisite: AMD GPU + Linux + ROCm environment (rocm + rocm-llvm-dev)
Clone code from here: https://github.com/LLNL/FloatGuard (sc25 branch)

1. Go to sample directory
2. Run:python3 [FloatGuard dir]/gdb script/time measure.py
3. Inspect results in the results/ directory

59

https://github.com/LLNL/FloatGuard

Setup Your Code for FloatGuard

e Replace the compiler in your Makefile with our wrapper script
HIPCC = [FloatGuard Directory]/gdb script/hipcc wrapper.sh

e Some Makefile projects are small and only has one source file, and one
command to compile and link the program. For those, make sure your compile
and link commands are separate:

S{HIPCC} S{HIPFLAGS} -c main.cpp -0 main.o

S{HIPCC} S{HIPFLAGS} -c other.cpp -o other.o
S{HIPCC} S{LINKFLAGS} main.o other.o -o main

60

Setup Your Code for FloatGuard

For CMake projects, replace the compiler in CMakelLists.txt

set (CMAKE CXX COMPILER [FloatGuard Dir]/gdb_script/hipcc_wrapper.sh)

Create a setup.ini file in the root directory of your code project. For CMake
projects, put the CMake command that creates project and compile here.

[DEFAULT]
compile = # the command line to compile the executable
run = # the command line to run the executable

clean = # the command line to clean the executable

61

Live Demo 3 - Running FloatGuard on Benchmarks

Prerequisite: AMD GPU + Linux + ROCm environment (rocm + rocm-llvm-dev)

1. Go to [benchmark directory]
2. Run:python3 [FloatGuard dir]/gdb script/time measure.py
3. Inspect results in the results/ directory

Benchmark shown:
e rodinia/cfd
e PolyBench-ACC/lu

62

Thank you!

Correspondence: Dolores Miao (wjmiao@ucdavis.edu /
captainmieu@gmail.com)
Code repository: https://github.com/LLNL/FloatGuard

R code for CV

| am currently seeking postdoc/
academic/industry research
opportunities—feel free to connect!

63

mailto:wjmiao@ucdavis.edu
mailto:captainmieu@gmail.com
https://github.com/LLNL/FloatGuard

