
Agenda

● 08:30 : Introduction
● 08:35 : FPChecker
● 09:35 : NixNan (Part-1)
● 09:55 : Fill Survey
● 10:00 : Coffee Break
● 10:30 : Brief Recap
● 10:35 : NixNan (Part-2)
● 11:05 : FloatGuard
● 11:50 : Closing Remarks
● 11:55 : Fill Survey

NixNan : Detecting Exceptions in NVIDIA GPUs
Detects exceptions in
SIMT Cores as well as Tensor Cores

 INF (if 0) or NaN (if not)

NixNan : Detecting Exceptions in NVIDIA GPUs
Detects exceptions in
SIMT Cores as well as Tensor Cores ● NVIDIA GPUs do not generate any

traps when an FP exception occurs

● Thus, we have to detect exceptions in
software

○ By decoding the exponent and
mantissa of the computed answer

 MS E

FF

non-zero => subnormal0

Detects exceptions in
SIMT Cores as well as Tensor Cores > LD_PRELOAD = nixnan.so

Pre-Compiled Application Binary

Intercept all "Kernel Launch"
CUDA Driver API Calls

For Each FP instruction :

 Inject_instrumentation();

CUDA Driver APIs

NixNan Detects Exceptions in NVIDIA GPUs per Kernel Launch

History: GPU-FPX Evolved to become NixNan

First demonstrated
during HPDC 2023

Has a detector and an
analyzer component
that does flow
analysis

Exits early when a
thread detects
exceptions

No support for FP16
or Tensor Cores

Continuing to refine it in
response to tests
(discovering missing
cases each time…)

Has a single component
that detects as well as
flow-analyzes

Finds all exceptions
(without quitting early)

Support for FP16 and
Tensor Cores

CUDA C Code CUDA C Code

nvcc

PTX Code

nvcc

PTX Code

Small matrix
multiplications
D = A.B+C

Performed by
Tensore Core
hardware.

ptxas

ptxas

SASS Code

SASS Code

Warp

Warp

We
Instrument
SASS.
Tells which
exceptions
occur after
optimizations.
Closed libraries
are "X-rayed" !!

Real-world Issue: NixNan usage
- Link: https://github.com/asappresearch/sru/issues/193

This case-study was done by Dr. Xinyi Li who developed GPU-FPX, the precursor to NixNan
 (the latter is a refined version with bug-fixes, and Tensor-Core Support)

We have adapted Dr. Li's test and fix to NixNan.

https://github.com/asappresearch/sru/issues/193

Issue
- Link: https://github.com/asappresearch/sru/issues/193

https://github.com/asappresearch/sru/issues/193

Tool Usage

Seeing NaNs early, we examined the source-code…

Found uninitialized the tensor; setting that fixes NaNs

torch.randn(20,32,128).cuda()

Before Fixing SRU

Exceptions
Written
Into
Memory

After Fixing SRU

Our
fix
was
applied

Agenda

● 08:30 : Introduction
● 08:35 : FPChecker
● 09:35 : NixNan (Part-1)
● 09:55 : Plz Fill Survey
● 10:00 : Coffee Break
● 10:30 : Brief Recap
● 10:35 : NixNan (Part-2)
● 11:05 : FloatGuard
● 11:50 : Closing Remarks
● 11:55 : Fill Survey

Agenda

● 08:30 : Introduction
● 08:35 : FPChecker
● 09:35 : NixNan (Part-1)
● 09:55 : Fill Survey
● 10:00 : Coffee Break
● 10:30 : Brief Recap
● 10:35 : NixNan (Part-2)
● 11:05 : FloatGuard
● 11:50 : Closing Remarks
● 11:55 : Fill Survey

Agenda + Single QR Code for those coming post-Coffee

● 08:30 : Introduction
● 08:35 : FPChecker
● 09:35 : NixNan (Part-1)
● 09:55 : Fill Survey
● 10:00 : Coffee Break
● 10:30 : Recap of First Half
● 10:35 : NixNan (Part-2)
● 11:05 : FloatGuard
● 11:50 : Closing Remarks
● 11:55 : Fill Survey

Demo of NixNan : HPC

● We show two cases of solving a linear system (next slide)
○ Matrix with a low condition number : matrix_0.csv
○ Matrix with a high condition number: matrix_5.csv

FP Exceptions in HPC : Ill-conditioned Matrix

LD_PRELOAD=~/nixnan.so
CUDA_MATRIX=matrix_5.csv ./LU_solver

LD_PRELOAD=~/nixnan.so
CUDA_MATRIX=matrix_0.csv ./LU_solver

http://nixnan.so
http://nixnan.so

Demo of NixNan : ML

● A simple GPT (due to Karpathy)
○ Observed many exceptions

■ They do not seem to affect the loss
● Also ran a medical agent (BioMistral)

○ Also observed many exceptions
■ Also does not affect the loss

Innocuous (?) FP Exceptions in BioMistral

LD_PRELOAD=~/nixnan.so
python simple_medical_agent.py

In case of ML routines, a huge number of
NaNs and INF are generated. Some do leak
into memory, but most seem to not.

#nixnan: ------------ nixnan Report -----------
#nixnan: --- FP16 Operations ---
#nixnan: NaN: 1000 (10890400 repeats)
#nixnan: Infinity: 253 (8631 repeats)
#nixnan: -Infinity: 119 (8037 repeats)
#nixnan: Subnormal: 1195 (1868286503 repeats)
#nixnan: Division by 0: 0 (0 repeats)
#nixnan: --- BF16 Operations ---
#nixnan: NaN: 0 (0 repeats)
#nixnan: Infinity: 0 (0 repeats)
#nixnan: -Infinity: 0 (0 repeats)
#nixnan: Subnormal: 0 (0 repeats)
#nixnan: Division by 0: 0 (0 repeats)
#nixnan: --- FP32 Operations ---
#nixnan: NaN: 2550 (79727147 repeats)
#nixnan: Infinity: 548 (75451 repeats)
#nixnan: -Infinity: 1102 (2786872 repeats)
#nixnan: Subnormal: 263 (20232 repeats)
#nixnan: Division by 0: 0 (0 repeats)
#nixnan: --- FP64 Operations ---
#nixnan: NaN: 0 (0 repeats)
#nixnan: Infinity: 0 (0 repeats)
#nixnan: -Infinity: 0 (0 repeats)
#nixnan: Subnormal: 0 (0 repeats)
#nixnan: Division by 0: 0 (0 repeats)
#nixnan: --- FP16 Memory Operations ---
#nixnan: NaN: 0 (0 repeats)
#nixnan: --- BF16 Memory Operations ---
#nixnan: NaN: 0 (0 repeats)
#nixnan: --- FP32 Memory Operations ---
#nixnan: NaN: 0 (0 repeats)
#nixnan: --- FP64 Memory Operations ---
#nixnan: NaN: 0 (0 repeats)

One NixNan Use: Vary Model Parameters; then Observe Exception Diffs
Experimental
Variation Studied
(Claude-created)

What It Changes
(Claude)

Expected NaN
 Reduction

(Claude)

BF16
(as observed)

FP32
(as observed)

baseline Nothing (reference) 0% NaN: 4592 (22306080)
inf: 1010 (666054)
-inf: 1616 (9361693)

bfloat16 Compute dtype
FP16→BF16

70-90% NaN: 1298 (11852994)
inf: 396 (189380)
-inf: 586 (918390)
subn: 1124 (11440312)

eager Disable Flash Attention 60-80% NaN: 1336 (191306408)
inf: 744 (863768)
-inf: 824 (1226989)

layernqorm_eps LayerNorm epsilon
1e-5→1e-3

20-40% NaN: 4759 (218503344)
inf: 1129 (730696)
-inf: 1799 (9400170)
subn: 1237 (42303)

attention_scale Scale attention scores 30-50% TBD TBD

attention_clip Clip attention logits 40-60% Nan: 458 (4623)
-inf: 248 (28452)

In ML, Frameworks such as PyTorch Silently "Fix" Exceptions,
but this can be Slow / Imperfect (believable ChatGPT summary below)

PyTorch Issue
160016 tells that this
can be "porous"

Framework-Recommended Solutions Don't Work Always

● Experts have told me how they deal with show-stopper exceptions
○ Try a bag of tricks (similar to those present in PyTorch - listed shortly)

● Thousands of reports that go like this

The uphill battles we are waging… and path ahead

● We are dependent on NVIDIA's binary instrumentation framework
○ NVBit
○ Our work "merely" extends NVBit

● NVBit issues keep popping up
○ We are at present waiting for a fix (w/o which we can't use their latest release)

■ earlier releases have issues
● Without NVBit, we have (and the community has) no tools whatsoever

○ Other issues: which instructions does nvcc generate?
■ and have we covered it?

Exceptions are a menace in ML – NixNan helped below!

SRU
https://github.com/asappresearch/sru/issues/193

● Throws NaN
● User unable to

diagnose
 We traced it to
 Misunderstood Pytorch
 allocation ; does not clear
 Memory as the user thought

Julia Bug
https://discourse.julialang.org/t/neuralpde-on-gpu-throws-nans-when-i-use-a-
source-term-elevated-to-some-power/114048

● User has NaN issue
during training in
Julia that launches to
GPUs; claims they
have a fix

 We found the NaN still coming,
 (albeit much later)

BatchNorm1d
https://github.com/pytorch/pytorch/issues/162489

● User posted Sep’25
● Finds CPU / GPU

differences wrt NaNs in
BatchNorm1d

 GPT finds a fix when fed our
 Tool’s traces.
 "need more precision"
 This is a "newbie bug"

This table lists the
PyTorch issues we
have examined
using NixNan

NixNan is unique
in that it can shed
more light

At present, certain
NVBit issues are
making NixNan
less effective

Original
developers may
have benefited a
lot more, than us!

Selected Examples Tried Type of Issue Conclusions on Issue - following NixNan run

Karpathy’s simple LLM NaN during training Does not affect training

Lossy compressor PyBlaz NaN during compression Does not affect operation

Issue 125674 Nan in grad. of scaled dotprod
attention

Can produce traces that may help customer

Issue 156020 Value too high Trace suggests NaN written into memory

Issue 156707 Issue with MPS Tracing on GPUs possible

Issue 152737 NaN prop in Conv1d Two NaN Stores into memory observed

Issue 157272 Reciprocal NaN issue Bug in CPU; ran GPU code for comparison
(traces)

Issue 159333 Foreach.copy bug NaN store into memory present. Traces
informative?

Issue 68425 Can run min instance NaN due to predicated execution known

Issue 160016 PyTorch's own anomaly detection can
be "porous" (does not report in the
cases shown here)

Reproduces issues pointed out

BioMistral None; runs Lots of NaN/INF observed; harmless?

The Reality : In systems such as PyTorch, must use
Tools such as NixNan during Kernel Design-Time!
(Else, it is too hopeless to find bugs later.)

Here are a few summary observations wrt PyTorch, to date

Easy bugs : can often spot
and use (with manual effort)

Short and Tricky : Basic Logic
of Kernel can be broken!

Too Large to Debug : Don't
 wait till this time!

BatchNorm1d : Switch from FP32 to
FP64 with better accumulation

#160876: silu(x) = x * sigmoid(x) returns
NaN; x = -inf (used to be 0)

Many issues are “too large to be posted”
– very little can be done

Evident that non-experts suffer.
Still gotta help them (non-uppity)

Naive implementation: -inf * 0
L’Hopital’s rule: 0

Solution: Avoid inserting bugs into
simpler APIs by having unit-testing

For effective root-causing, we need to bridge across levels of calls

GPTs may help bridge PyTorch calls, GPU calls, and Exception-annotated SASS

Note that all line-numbers are 0 (feature "vanished" in
one NVBit release…)

> LD_PRELOAD = nixnan.so
Pre-Compiled Application Binary

Intercept all "Kernel Launch"
CUDA Driver API Calls

For Each FP instruction :

 Inject_instrumentation();

CUDA Driver APIs

Deep-Dive : Tensor-Core Support of NixNan

Tensor core register layout

Each thread holds
part of the matrices in
its registers

Tensor core register layout

Each thread holds
part of the matrices in
its registers
Thread T1 holds:

● The first four
elements of A

Tensor core register layout

Each thread holds
part of the matrices in
its registers
Thread T1 holds:

● The first four
elements of A

● The first two
elements of B

Tensor core register layout

Each thread holds
part of the matrices in
its registers
Thread T1 holds:

● The first four
elements of A

● The first two
elements of B

● The first two
elements of C

Concluding Remarks : Let's visit all the topics discussed
● NixNan helps reveal exceptions via Binary Instrumentation

○ Helpful for closed-source libraries (many are)

● Knowing which exceptions matter is not straightforward
○ Easier with HPC codes

■ NaN / INF Exceptions almost always are bad
○ Not well-understood with ML codes

■ NaN / INF Exceptions seem to fly around with abandon
■ Can "jiggle" ML models and see exceptions change (as on Slide 32)

● This may give insights for improvement / debugging
● Users are suffering from exceptions (e.g., PyTorch Open issues)

● Limitations, Need for Community + Manufacturer Cooperation
○ GPUs are not well-documented

■ Reverse-engineering GPU behaviors was necessary
● Not easy to scale, considering the rate of arrival of new GPUs

○ Help from GPU manufacturers can greatly help advance FP debugging

Agenda

● 08:30 : Introduction
● 08:35 : FPChecker
● 09:35 : NixNan (Part-1)
● 09:55 : Fill Survey
● 10:00 : Coffee Break
● 10:30 : Brief Recap
● 10:35 : NixNan (Part-2)
● 11:05 : FloatGuard
● 11:50 : Closing Remarks
● 11:55 : Fill Survey

