
Tools to Detect and Diagnose Floating-Point Errors in
Heterogeneous Computing Hardware and Software

A Half-Day Tutorial at Supercomputing 2025

Tut 122: Sunday, 16 November 2025, 8:30am - 12:00pm CST : Location 121

Tools to Detect and Diagnose Floating-Point Errors in
Heterogeneous Computing Hardware and Software

A Half-Day Tutorial at Supercomputing 2025

Ignacio Laguna
Mark Baranowski and
 Ganesh Gopalakrishnan

Dolores Miao and
Cindy Rubio-González

Presenters

Agenda, and a single QR code to access all our material

● 08:30 : Introduction
● 08:35 : FPChecker
● 09:35 : NixNan (Part-1)
● 09:55 : Plz Fill Survey
● 10:00 : Coffee Break
● 10:30 : Brief Recap
● 10:35 : NixNan (Part-2)
● 11:05 : FloatGuard
● 11:50 : Closing Remarks
● 11:55 : Plz Fill Survey

Floating-Point Computations are fundamental to CPUs and GPUs

Floating-Point Numbers : A compromise, with many good
properties, that can span a large range with a small number of bits
Half the representable numbers lie between -1 and +1

Form
at

Prec. Exp. Sm.
norm.

Lrgst.
Norm.

ULP
@
emax

eql.
2'c
bits

Redn.
factor

FP16
16 bits

10 5 6.10
E-5

6.55
E4

 5 41 2.5

BF16
16 bits

7 8 1.18
E-38

3.39
E38

120 262 16.3

TF32
19 bits

10 8 1.18
E-38

3.40
E38

117 265 13.9

FP32
32 bits

23 8 1.18
E-38

3.40
E38

104 254 7.9

FP64
64 bits

52 11 2.23
E-308

1.80
E308

971 2099
bits

32.7

FP allows us to get away moving 64 bits …. instead of moving 2099 bits (in 2's comp.)

From "Hardware Trends Impacting Floating-Point
Computations In Scientific Applications," Dongarra et al.

Lower precision Floating-Point saves energy (and time)
High-Precision
LU Solving

Low-Precision
LU Solving

While increasing
precision almost
always improves
accuracy, there are
rare cases where this
does not happen.

● The loop in FP32
iterates 10 times
(as per real
semantics)

● In FP64, it iterates
11 times

Non-intuitive behavior
caused by Rounding!

Focus of this tutorial

● Excessive Rounding Error (not addressed in this tutorial)

● Exhausting the range (addressed)

○ Detection of Exceptions (main focus)

FP Exceptions (Exceptional Values) are Undesirable (often are bugs)

● FP32: (1.9 x 1019)2 → INF … (in E4M3, 162 = INF) ⇐ a popular ML low-prec format
○ Easily generated during dot-product

● Of the FP Exceptions, we focus on INF and NaN
○ NaNs can skew control-flow

● This macro is buggy
○ #define MAX(x,y) ((x >= y) ? x : y)

hint : consider x == NaN or y == NaN

● Exceptions often vanish harmlessly (e.g. in ML codes)
○ But it is difficult to know which control-flows they have affected meanwhile

Tools Presented

GPU-FPX + NixNaN FloatGuard

AMD
GPUs

LLVM

NVIDIA GPUs

Agenda

● 08:30 : Introduction
● 08:35 : FPChecker
● 09:35 : NixNan (Part-1)
● 09:55 : Fill Survey
● 10:00 : Coffee Break
● 10:30 : Brief Recap
● 10:35 : NixNan (Part-2)
● 11:05 : FloatGuard
● 11:50 : Closing Remarks
● 11:55 : Fill Survey

LLNL-PRES-2012776
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence L ivermore National Secur ity, LLC

Tutorial

FPChecker:
Floating-Point Profiling Through Compiler-Instrumentation

Ignacio Laguna

https://fpchecker.org

https://fpchecker.org/index.html

2/36
LLNL-PRES-2012776

Agenda

Intro 5 min

Tool’s Overview 15 min

Installation & Exercises (hands-on) 35 min

Q&A 5 min

3/36
LLNL-PRES-2012776

FPChecker Overview

▪ Detects floating-point exceptions
— NaN, Infinity

▪ Shows impacted lines of code

▪ Shows other “code smells”
— Cancellations, underflows

▪ Analyzes dynamic range
— Is FP32 or FP64 enough?

▪ Works by compiler instrumentation
— Relies on Clang/LLVM

▪ Documentation: https://fpchecker.org/

https://fpchecker.org/

4/36
LLNL-PRES-2012776

Report Example

5/36
LLNL-PRES-2012776

Exponent Usage (Dynamic Range)

Out of range for
FP32

6/36
LLNL-PRES-2012776

1. Use clang++-fpchecker wrapper in your Makefile
— Or add instrumentation pass to your CFLAGS and/or CXXFLAGS

2. Enable FPC_INSTRUMENT environment variable when compiling
$ FPC_INSTRUMENT=1 make

3. Run executable

4. Create report

LLVM Instrumentation Process

Source Clang &
LLVM IR Optimizations (-O2) Instrumentation Executable

7/36
LLNL-PRES-2012776

Two Classes of Env Variables:
Compile-time & Run-time

Covered in the Tutorial

8/36
LLNL-PRES-2012776

Software Requirements

▪ Linux or Mac OS
— Windows not supported

▪ LLVM/Clang 19

▪ Cmake

▪ Python 3.12

▪ Matplotlib

▪ Optional for parallel code:
— MPI
— OpenMP

9/36
LLNL-PRES-2012776

Installation Process

1. Install Conda (this allow us to install LLVM easily)
2. Install FPChecker

10/36
LLNL-PRES-2012776

How to install Anaconda on Mac or Linux

For Mac, watch this YouTube video:

https://youtu.be/DNu8pQOYRGg

For Linux:

https://docs.conda.io/projects/conda/en/stable/user-guide/install/linux.html

https://youtu.be/DNu8pQOYRGg
https://docs.conda.io/projects/conda/en/stable/user-guide/install/linux.html
https://docs.conda.io/projects/conda/en/stable/user-guide/install/linux.html
https://docs.conda.io/projects/conda/en/stable/user-guide/install/linux.html

11/36
LLNL-PRES-2012776

Steps to Install Conda in Mac

Open Installer

Follow the steps

In the terminal, you should see the word base:

(base) [user@system] $

Got https://www.anaconda.com/ -> Download Download

Provide password if asked

https://www.anaconda.com/

12/36
LLNL-PRES-2012776

Get FPChecker

This tutorial is based on release v0.5

$
$
$

$
$

We will install all in /tmp
cd /tmp
mkdir tutorial
cd tutorial

Clone FPChecker
git clone https://github.com/LLNL/FPChecker.git
cd FPChecker

13/36
LLNL-PRES-2012776

Install FPChecker Dependencies with Conda (Option 1)
Manual Installation

$
$

$
$
$
$

$

$

Create a conda env
conda create --name tutorial_env
conda activate tutorial_env

Install dependencies: cmake, LLVM, clang++, python
conda install cmake
conda install llvmdev=19.1.7 -c conda-forge
conda install clangxx=19.1.7 -c conda-forge
conda install python=3.12.9

Install matplotlib. Not required to build FPChecker, but needed for reports
pip3 install matplotlib

MPI for some examples, but not required to build for FPChecker
conda install openmpi=5.0.7 -c conda-forge

14/36
LLNL-PRES-2012776

Install FPChecker Dependencies with Conda (Option 2)
With environment file for Mac (ARM)

▪ The conda_environment.txt file provides the packages for Mac (ARM 64-bit)

▪ This installs all the dependencies:
— LLVM 19
— Clang++ 19
— Cmake

$
$
$

Create a conda env and dependencies
cd tutorial
conda create --name tutorial_env --file conda_environment.txt -c conda-forge
conda activate tutorial_env

15/36
LLNL-PRES-2012776

Install FPChecker

If the right python3 is not found, set the DPython3_ROOT_DIR
$ cmake -DCMAKE_INSTALL_PREFIX=../../install -DPython3_ROOT_DIR=/opt/anaconda3 ..

$
$
$
$
$

$

cd ..
mkdir build
cd build/
cmake -DCMAKE_INSTALL_PREFIX=../../install ..
make && make install

Export installation path
export PATH=/tmp/tutorial/install/bin:$PATH

16/36
LLNL-PRES-2012776

Tutorial Exercises

17/36
LLNL-PRES-2012776

Tutorial Examples

Topics Example Program
NaN and Infinity exceptions Linear system (Ax=b) solver with LU decomposition +

partial pivoting

Exponent usage − from FP64 and FP32 precision Finite differences + 1D Reaction-Diffusion PDE

Controlling slowdown with code annotations Finite Elements + 2D Heat Conduction PDE solver

Analyzing parallel code: MPI/OpenMP MPI-based Parallel Heat PDE solver

1

2

3

4

18/36
LLNL-PRES-2012776

▪ Common library:
— BLAS operations
— Linear solvers (LU, CG)
— Matrix & vector printing
— Other functionalities

First, build the common library
It will be used in all examples

$
$

Compile library
cd /tmp/tutorial/FPChecker/tutorial/common/
FPC_INSTRUMENT=1 make

19/36
LLNL-PRES-2012776

Example 1:
NaN & Infinity exception in linear solver

▪ Location:
tutorial/example_1/lu_solve.cpp

▪ Program description
— Linear solver 𝐴𝑥 = 𝑏
— Solves 𝐴𝑥 = 1
— LU decomposition: 𝑃𝐴 = 𝐿𝑈
— Partial pivoting
— Solve by forward/backward substitution

▪ Use an ill-condition problem (matrix)

▪ Produces NaN and Infinity
— U factor ends up with zero diagonal
— Division by zero

▪ FPChecker locates the exceptions

FPChecker Use Case

20/36
LLNL-PRES-2012776

$
$

$

$
$

$

Compile and run problem
FPC_INSTRUMENT=1 make
./lu_solve matrix.csv

List trace files (there is one)
ls -l .fpc_logs/

Create report
fpc-create-report -t "./lu_solve matrix.csv"
open fpc-report/index.html

Clear logs and remove report
fpc-create-report -rc

Example 1: Script
(Good Matrix)

Nothing interesting in the report

21/36
LLNL-PRES-2012776

$

$
$

Run problem
./lu_solve bad_matrix.csv

Create report
fpc-create-report -t "./lu_solve bad_matrix.csv"
open fpc-report/index.html

Example 1: Script
(Bad Matrix)

• NaN
• Division by zero

22/36
LLNL-PRES-2012776

Report of Example 1

23/36
LLNL-PRES-2012776

Report of Example 1

24/36
LLNL-PRES-2012776

Tutorial Examples

Topics Example Program
NaN and Infinity exceptions Linear system (Ax=b) solver with LU decomposition +

partial pivoting

Exponent usage − from FP64 and FP32 precision Finite differences + 1D Reaction-Diffusion PDE

Controlling slowdown with code annotations Finite Elements + 2D Heat Conduction PDE solver

Analyzing parallel code: MPI/OpenMP MPI-based Parallel Heat PDE solver

1

2

3

4

25/36
LLNL-PRES-2012776

Example 2:
Exponent Usage on FP64-to-FP32 porting
▪ Location:

tutorial/example_2/reaction_diffusion.cpp

▪ Run simulation in FP64 and FP32

▪ Vizualize exponent usage

▪ In FP32, values are ”out-of-range”
— Produce exceptions

FPChecker Use Case
▪ Program description
— 1D linear reaction-diffusion equation

— 𝑃𝐷𝐸: 𝜕𝑢
𝜕𝑡

= 𝐷 𝜕2𝑢
𝜕𝑥2 + 𝜆𝑢

— Explicit finite difference method
• Forward Euler in time, Central Difference in space

— Large 𝜆 provides positive feedback
• Over time, it leads to exponential growth

▪ Code parameters:
𝐷 = 0.01

𝜆 = 25

26/36
LLNL-PRES-2012776

Example 2: Script

FP64 Version

$
$

$

$
$

$

Compile and run problem
FPC_INSTRUMENT=1 make
FPC_EXPONENT_USAGE=1 ./reaction_diffusion

List trace files (there are two)
ls -l .fpc_logs/

Create report
fpc-create-report
open fpc-report/index.html

Clear logs and remove report
fpc-create-report -rc

27/36
LLNL-PRES-2012776

Report (Example 1, FP64)

Out of range for
FP32

28/36
LLNL-PRES-2012776

Example 2: Script

FP32 Version

First Step:

• Open reaction_diffusion.cpp
• Modify lines 7-8 to use FP32

typedef double Real_t;
// typedef float Real_t;

$
$

$

$
$

$

Compile and run problem
FPC_INSTRUMENT=1 make
FPC_EXPONENT_USAGE=1 ./reaction_diffusion

List traces files (there are two)
ls -l .fpc_logs/

Create report
fpc-create-report
open fpc-report/index.html

Clear logs and remove report
fpc-create-report -rc

29/36
LLNL-PRES-2012776

Report (Example 2, FP32)

30/36
LLNL-PRES-2012776

Tutorial Examples

Topics Example Program
NaN and Infinity exceptions Linear system (Ax=b) solver with LU decomposition +

partial pivoting

Exponent usage − from FP64 and FP32 precision Finite differences + 1D Reaction-Diffusion PDE

Controlling slowdown with code annotations Finite Elements + 2D Heat Conduction PDE solver

Analyzing parallel code: MPI/OpenMP MPI-based Parallel Heat PDE solver

1

2

3

4

31/36
LLNL-PRES-2012776

Example 3:
Annotations to Control Slowdown
▪ Location:

tutorial/example_3/heat_PDE_finite_elements.cpp

▪ Slowdown can be high (for a large problem)

▪ Reduce slowdown by annotating the code

FPChecker Use Case

▪ Program description
— 2D Heat conduction equation with a source term

• Steady state

— 𝑃𝐷𝐸: 𝜕2𝑇
𝜕𝑥2 + 𝜕2𝑇

𝜕𝑦2 = 𝑠(𝑥, 𝑦)

— Finite elements method
• Triangular shapes

— 𝑇 𝑥, 𝑦 : temperature distribution
— Domain: L shape
— Source 𝑠 𝑥, 𝑦 = 0
— Boundary conditions: temp applied on the sides

32/36
LLNL-PRES-2012776

Example 3: Script

• Run small problem (10 nodes)
• Should take less than 1 second

• Run a larger problem (50 nodes)
• It takes about 20 seconds in my laptop

$
$
$

$

Compile and run problem
FPC_INSTRUMENT=1 make
time FPC_EXPONENT_USAGE=1
./heat_PDE_finite_elements 10

Optional: Vizualize heat map
python3 plot.py

$
Compile and run problem
time FPC_EXPONENT_USAGE=1 ./heat_PDE_finite_elements 50

33/36
LLNL-PRES-2012776

Code Annotations

▪ Let’s annotate the matrix-multiply function
— That is: we only instrument and analyze that function
— Should reduce overhead significantly

▪ Location:
tutorial/common/blas.cpp

▪ Search for:
vector<vector<double>> matrix_multiply(…

▪ Add (or uncomment):
FPC_INSTRUMENT_FUNC

34/36
LLNL-PRES-2012776

$
$
$

$
$
$

cd ../common/
make clean
FPC_INSTRUMENT=1 FPC_ANNOTATED=1 make

cd ../example_3/
FPC_INSTRUMENT=1 FPC_ANNOTATED=1 make
time FPC_EXPONENT_USAGE=1 ./heat_PDE_finite_elements 50
...
...
real 0m1.049s
user 0m0.729s
sys 0m0.071s

Example 3: Script

Recompile the common library

Lower run time

35/36
LLNL-PRES-2012776

Tutorial Examples

Topics Example Program
NaN and Infinity exceptions Linear system (Ax=b) solver with LU decomposition +

partial pivoting

Exponent usage − from FP64 and FP32 precision Finite differences + 1D Reaction-Diffusion PDE

Controlling slowdown with code annotations Finite Elements + 2D Heat Conduction PDE solver

Analyzing parallel code: MPI/OpenMP MPI-based Parallel Heat PDE solver

1

2

3

4

36/36
LLNL-PRES-2012776

Example 4:
Analyzing MPI code
▪ Location:

tutorial/example_4/heat_mpi.cpp

▪ Generates traces for MPI programs

▪ Combine traces into a single report

FPChecker Use Case
▪ Program description
— 1D heat equation

— 𝑃𝐷𝐸: 𝜕𝑢
𝜕𝑡

= 𝛼 𝜕2𝑢
𝜕𝑥2

— Explicit finite difference method

▪ MPI domain decomposition:
— 1D spatial grid divided into NPROC contiguous

segments
— NPROC: number of MPI processes
— Each process computes temperature in its segment

37/36
LLNL-PRES-2012776

Example 4: Script

$
$

$

$
$

Show Makefile uses CXX = mpic++-fpchecker
Compile and run problem
OMPI_CXX indicates to Open MPI which conda compiler to use
OMPI_CXX=clang++ FPC_INSTRUMENT=1 make
FPC_EXPONENT_USAGE=1 mpiexec -n 4 ./heat_mpi

List trace files (there are 4)
ls .fpc_logs/
fpc_king01_95250.json fpc_king01_95251.json
fpc_king01_95252.json fpc_king01_95253.json

Create report
fpc-create-report
open fpc-report/index.html

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

42/36
LLNL-PRES-2012776

Showing the Configuration of the Installation

$ fpchecker-show
==
 FPChecker Configuration
==

Installation path: /tmp/tutorial/install

Add this to CFLAGS and/or CXXFLAGS:
-g -include /tmp/tutorial/install/src/Runtime_cpu.h -fpass-plugin=/tmp/tutorial/install/lib/libfpchecker_cpu.dylib

Wrappers are located here:
/tmp/tutorial/install/bin/clang-fpchecker
/tmp/tutorial/install/bin/clang++-fpchecker
/tmp/tutorial/install/bin/mpicc-fpchecker
/tmp/tutorial/install/bin/mpicxx-fpchecker

43/36
LLNL-PRES-2012776

▪ Removing an environment:
conda env remove --name <environment_name>

▪ Adding an environment:
conda env --name <environment_name>

▪ List environments:
conda env list

Conda Commands:

44/36
LLNL-PRES-2012776

Demo FPChecker in Some Packages

Package Build Model
SuperLU Linear solver C, cmake
Hypre Linear solver C, cmake, MPI
LAMMPS Molecular dynamics C, C++, cmake
FFTW Fourier transform C, autotools

45/36
LLNL-PRES-2012776

▪ Configure to build internal BLAS
— There seems to be an error with fpchecker-clang and Cmake finding BLAS in Mac

Example: SuperLU

$
$
$
$
$
$
$
$

git clone git@github.com:xiaoyeli/superlu.git
git clone https://github.com/xiaoyeli/superlu.git
cd superlu
git checkout 4ef39075e029927e8c959b22c8e7052dcb40c995
mkdir build
cd build
CC=clang-fpchecker cmake -DCMAKE_INSTALL_PREFIX=./install -Denable_internal_blaslib=ON ..
FPC_INSTRUMENT=1 make -j
make install

46/36
LLNL-PRES-2012776

▪ See example at:
— FPChecker/tutorial/other_examples/fftw:

• fftw_test.c

Example: FFTW

$
$
$
$

$
$

wget https://www.fftw.org/fftw-3.3.10.tar.gz
tar -zxvf fftw-3.3.10.tar.gz
cd fftw-3.3.10
CC=clang-fpchecker ./configure --disable-fortran --prefix=/tmp/tutorial/examples/fftw/fftw-
3.3.10/fftw-install
FPC_INSTRUMENT=1 make –j
make install

47/36
LLNL-PRES-2012776

Example: LAMMPS

$
$
$
$
$
$
$

$
$

wget https://github.com/lammps/lammps/archive/refs/tags/stable_29Aug2024_update2.tar.gz
tar -xvf stable_29Aug2024_update2.tar.gz
cd lammps-stable_29Aug2024_update2/
cd cmake/
mkdir build
cd build
CC=clang CXX=clang++ cmake \
-DCMAKE_CXX_FLAGS="-include /tmp/tutorial/install/src/Runtime_cpu.h -fpass-
plugin=/tmp/tutorial/install/lib/libfpchecker_cpu.dylib -g" \
-DBUILD_MPI=OFF -DBUILD_OMP=OFF -DBUILD_FORTRAN=OFF \
-DBUILD_SHARED_LIBS=OFF -DENABLE_TESTING=OFF ..
FPC_INSTRUMENT=1 make -j
./lmp -in ../../examples/melt/in.melt

48/36
LLNL-PRES-2012776

▪ HYPRE is installed in:
— /tmp/tutorial/examples/hypre/src/hypre

▪ Test in tutorial/other_examples/hypre:
— To compile example:

FPC_INSTRUMENT=1 OMPI_CC=clang make
HYPRE_MATRIX=matrix.csv ./hypre_test 0

Example: Hypre

$
$
$
$
$
$
$

$
$

git clone git@github.com:hypre-space/hypre.git
cd hypre
git checkout be52325a3ed8923fb93af348b1262ecfe44ab5d2
cd src
mkdir build
cd build
CC=clang cmake -DHYPRE_ENABLE_MPI=ON \
-DHYPRE_WITH_EXTRA_CFLAGS="-include /tmp/tutorial/install/src/Runtime_cpu.h -fpass-
plugin=/tmp/tutorial/install/lib/libfpchecker_cpu.dylib -g" ..
FPC_INTRUMENT=1 make –j
make install

Agenda

● 08:30 : Introduction
● 08:35 : FPChecker
● 09:35 : NixNan (Part-1)
● 09:55 : Fill Survey
● 10:00 : Coffee Break
● 10:30 : Brief Recap
● 10:35 : NixNan (Part-2)
● 11:05 : FloatGuard
● 11:50 : Closing Remarks
● 11:55 : Fill Survey

NixNan : Detecting Exceptions in NVIDIA GPUs
Detects exceptions in
SIMT Cores as well as Tensor Cores

 INF (if 0) or NaN (if not)

NixNan : Detecting Exceptions in NVIDIA GPUs
Detects exceptions in
SIMT Cores as well as Tensor Cores ● NVIDIA GPUs do not generate any

traps when an FP exception occurs

● Thus, we have to detect exceptions in
software

○ By decoding the exponent and
mantissa of the computed answer

 MS E

FF

non-zero => subnormal0

Detects exceptions in
SIMT Cores as well as Tensor Cores > LD_PRELOAD = nixnan.so

Pre-Compiled Application Binary

Intercept all "Kernel Launch"
CUDA Driver API Calls

For Each FP instruction :

 Inject_instrumentation();

CUDA Driver APIs

NixNan Detects Exceptions in NVIDIA GPUs per Kernel Launch

History: GPU-FPX Evolved to become NixNan

First demonstrated
during HPDC 2023

Has a detector and an
analyzer component
that does flow
analysis

Exits early when a
thread detects
exceptions

No support for FP16
or Tensor Cores

Continuing to refine it in
response to tests
(discovering missing
cases each time…)

Has a single component
that detects as well as
flow-analyzes

Finds all exceptions
(without quitting early)

Support for FP16 and
Tensor Cores

CUDA C Code CUDA C Code

nvcc

PTX Code

nvcc

PTX Code

Small matrix
multiplications
D = A.B+C

Performed by
Tensore Core
hardware.

ptxas

ptxas

SASS Code

SASS Code

Warp

Warp

We
Instrument
SASS.
Tells which
exceptions
occur after
optimizations.
Closed libraries
are "X-rayed" !!

Real-world Issue: NixNan usage
- Link: https://github.com/asappresearch/sru/issues/193

This case-study was done by Dr. Xinyi Li who developed GPU-FPX, the precursor to NixNan
 (the latter is a refined version with bug-fixes, and Tensor-Core Support)

We have adapted Dr. Li's test and fix to NixNan.

https://github.com/asappresearch/sru/issues/193

Issue
- Link: https://github.com/asappresearch/sru/issues/193

https://github.com/asappresearch/sru/issues/193

Tool Usage

Seeing NaNs early, we examined the source-code…

Found uninitialized the tensor; setting that fixes NaNs

torch.randn(20,32,128).cuda()

Before Fixing SRU

Exceptions
Written
Into
Memory

After Fixing SRU

Our
fix
was
applied

Agenda

● 08:30 : Introduction
● 08:35 : FPChecker
● 09:35 : NixNan (Part-1)
● 09:55 : Plz Fill Survey
● 10:00 : Coffee Break
● 10:30 : Brief Recap
● 10:35 : NixNan (Part-2)
● 11:05 : FloatGuard
● 11:50 : Closing Remarks
● 11:55 : Fill Survey

Agenda

● 08:30 : Introduction
● 08:35 : FPChecker
● 09:35 : NixNan (Part-1)
● 09:55 : Fill Survey
● 10:00 : Coffee Break
● 10:30 : Brief Recap
● 10:35 : NixNan (Part-2)
● 11:05 : FloatGuard
● 11:50 : Closing Remarks
● 11:55 : Fill Survey

Agenda + Single QR Code for those coming post-Coffee

● 08:30 : Introduction
● 08:35 : FPChecker
● 09:35 : NixNan (Part-1)
● 09:55 : Fill Survey
● 10:00 : Coffee Break
● 10:30 : Recap of First Half
● 10:35 : NixNan (Part-2)
● 11:05 : FloatGuard
● 11:50 : Closing Remarks
● 11:55 : Fill Survey

Demo of NixNan : HPC

● We show two cases of solving a linear system (next slide)
○ Matrix with a low condition number : matrix_0.csv
○ Matrix with a high condition number: matrix_5.csv

FP Exceptions in HPC : Ill-conditioned Matrix

LD_PRELOAD=~/nixnan.so
CUDA_MATRIX=matrix_5.csv ./LU_solver

LD_PRELOAD=~/nixnan.so
CUDA_MATRIX=matrix_0.csv ./LU_solver

http://nixnan.so
http://nixnan.so

Demo of NixNan : ML

● A simple GPT (due to Karpathy)
○ Observed many exceptions

■ They do not seem to affect the loss
● Also ran a medical agent (BioMistral)

○ Also observed many exceptions
■ Also does not affect the loss

Innocuous (?) FP Exceptions in BioMistral

LD_PRELOAD=~/nixnan.so
python simple_medical_agent.py

In case of ML routines, a huge number of
NaNs and INF are generated. Some do leak
into memory, but most seem to not.

#nixnan: ------------ nixnan Report -----------
#nixnan: --- FP16 Operations ---
#nixnan: NaN: 1000 (10890400 repeats)
#nixnan: Infinity: 253 (8631 repeats)
#nixnan: -Infinity: 119 (8037 repeats)
#nixnan: Subnormal: 1195 (1868286503 repeats)
#nixnan: Division by 0: 0 (0 repeats)
#nixnan: --- BF16 Operations ---
#nixnan: NaN: 0 (0 repeats)
#nixnan: Infinity: 0 (0 repeats)
#nixnan: -Infinity: 0 (0 repeats)
#nixnan: Subnormal: 0 (0 repeats)
#nixnan: Division by 0: 0 (0 repeats)
#nixnan: --- FP32 Operations ---
#nixnan: NaN: 2550 (79727147 repeats)
#nixnan: Infinity: 548 (75451 repeats)
#nixnan: -Infinity: 1102 (2786872 repeats)
#nixnan: Subnormal: 263 (20232 repeats)
#nixnan: Division by 0: 0 (0 repeats)
#nixnan: --- FP64 Operations ---
#nixnan: NaN: 0 (0 repeats)
#nixnan: Infinity: 0 (0 repeats)
#nixnan: -Infinity: 0 (0 repeats)
#nixnan: Subnormal: 0 (0 repeats)
#nixnan: Division by 0: 0 (0 repeats)
#nixnan: --- FP16 Memory Operations ---
#nixnan: NaN: 0 (0 repeats)
#nixnan: --- BF16 Memory Operations ---
#nixnan: NaN: 0 (0 repeats)
#nixnan: --- FP32 Memory Operations ---
#nixnan: NaN: 0 (0 repeats)
#nixnan: --- FP64 Memory Operations ---
#nixnan: NaN: 0 (0 repeats)

One NixNan Use: Vary Model Parameters; then Observe Exception Diffs
Experimental
Variation Studied
(Claude-created)

What It Changes
(Claude)

Expected NaN
 Reduction

(Claude)

BF16
(as observed)

FP32
(as observed)

baseline Nothing (reference) 0% NaN: 4592 (22306080)
inf: 1010 (666054)
-inf: 1616 (9361693)

bfloat16 Compute dtype
FP16→BF16

70-90% NaN: 1298 (11852994)
inf: 396 (189380)
-inf: 586 (918390)
subn: 1124 (11440312)

eager Disable Flash Attention 60-80% NaN: 1336 (191306408)
inf: 744 (863768)
-inf: 824 (1226989)

layernqorm_eps LayerNorm epsilon
1e-5→1e-3

20-40% NaN: 4759 (218503344)
inf: 1129 (730696)
-inf: 1799 (9400170)
subn: 1237 (42303)

attention_scale Scale attention scores 30-50% TBD TBD

attention_clip Clip attention logits 40-60% Nan: 458 (4623)
-inf: 248 (28452)

In ML, Frameworks such as PyTorch Silently "Fix" Exceptions,
but this can be Slow / Imperfect (believable ChatGPT summary below)

PyTorch Issue
160016 tells that this
can be "porous"

Framework-Recommended Solutions Don't Work Always

● Experts have told me how they deal with show-stopper exceptions
○ Try a bag of tricks (similar to those present in PyTorch - listed shortly)

● Thousands of reports that go like this

The uphill battles we are waging… and path ahead

● We are dependent on NVIDIA's binary instrumentation framework
○ NVBit
○ Our work "merely" extends NVBit

● NVBit issues keep popping up
○ We are at present waiting for a fix (w/o which we can't use their latest release)

■ earlier releases have issues
● Without NVBit, we have (and the community has) no tools whatsoever

○ Other issues: which instructions does nvcc generate?
■ and have we covered it?

Exceptions are a menace in ML – NixNan helped below!

SRU
https://github.com/asappresearch/sru/issues/193

● Throws NaN
● User unable to

diagnose
 We traced it to
 Misunderstood Pytorch
 allocation ; does not clear
 Memory as the user thought

Julia Bug
https://discourse.julialang.org/t/neuralpde-on-gpu-throws-nans-when-i-use-a-
source-term-elevated-to-some-power/114048

● User has NaN issue
during training in
Julia that launches to
GPUs; claims they
have a fix

 We found the NaN still coming,
 (albeit much later)

BatchNorm1d
https://github.com/pytorch/pytorch/issues/162489

● User posted Sep’25
● Finds CPU / GPU

differences wrt NaNs in
BatchNorm1d

 GPT finds a fix when fed our
 Tool’s traces.
 "need more precision"
 This is a "newbie bug"

This table lists the
PyTorch issues we
have examined
using NixNan

NixNan is unique
in that it can shed
more light

At present, certain
NVBit issues are
making NixNan
less effective

Original
developers may
have benefited a
lot more, than us!

Selected Examples Tried Type of Issue Conclusions on Issue - following NixNan run

Karpathy’s simple LLM NaN during training Does not affect training

Lossy compressor PyBlaz NaN during compression Does not affect operation

Issue 125674 Nan in grad. of scaled dotprod
attention

Can produce traces that may help customer

Issue 156020 Value too high Trace suggests NaN written into memory

Issue 156707 Issue with MPS Tracing on GPUs possible

Issue 152737 NaN prop in Conv1d Two NaN Stores into memory observed

Issue 157272 Reciprocal NaN issue Bug in CPU; ran GPU code for comparison
(traces)

Issue 159333 Foreach.copy bug NaN store into memory present. Traces
informative?

Issue 68425 Can run min instance NaN due to predicated execution known

Issue 160016 PyTorch's own anomaly detection can
be "porous" (does not report in the
cases shown here)

Reproduces issues pointed out

BioMistral None; runs Lots of NaN/INF observed; harmless?

The Reality : In systems such as PyTorch, must use
Tools such as NixNan during Kernel Design-Time!
(Else, it is too hopeless to find bugs later.)

Here are a few summary observations wrt PyTorch, to date

Easy bugs : can often spot
and use (with manual effort)

Short and Tricky : Basic Logic
of Kernel can be broken!

Too Large to Debug : Don't
 wait till this time!

BatchNorm1d : Switch from FP32 to
FP64 with better accumulation

#160876: silu(x) = x * sigmoid(x) returns
NaN; x = -inf (used to be 0)

Many issues are “too large to be posted”
– very little can be done

Evident that non-experts suffer.
Still gotta help them (non-uppity)

Naive implementation: -inf * 0
L’Hopital’s rule: 0

Solution: Avoid inserting bugs into
simpler APIs by having unit-testing

For effective root-causing, we need to bridge across levels of calls

GPTs may help bridge PyTorch calls, GPU calls, and Exception-annotated SASS

Note that all line-numbers are 0 (feature "vanished" in
one NVBit release…)

> LD_PRELOAD = nixnan.so
Pre-Compiled Application Binary

Intercept all "Kernel Launch"
CUDA Driver API Calls

For Each FP instruction :

 Inject_instrumentation();

CUDA Driver APIs

Deep-Dive : Tensor-Core Support of NixNan

Tensor core register layout

Each thread holds
part of the matrices in
its registers

Tensor core register layout

Each thread holds
part of the matrices in
its registers
Thread T1 holds:

● The first four
elements of A

Tensor core register layout

Each thread holds
part of the matrices in
its registers
Thread T1 holds:

● The first four
elements of A

● The first two
elements of B

Tensor core register layout

Each thread holds
part of the matrices in
its registers
Thread T1 holds:

● The first four
elements of A

● The first two
elements of B

● The first two
elements of C

Concluding Remarks : Let's visit all the topics discussed
● NixNan helps reveal exceptions via Binary Instrumentation

○ Helpful for closed-source libraries (many are)

● Knowing which exceptions matter is not straightforward
○ Easier with HPC codes

■ NaN / INF Exceptions almost always are bad
○ Not well-understood with ML codes

■ NaN / INF Exceptions seem to fly around with abandon
■ Can "jiggle" ML models and see exceptions change (as on Slide 32)

● This may give insights for improvement / debugging
● Users are suffering from exceptions (e.g., PyTorch Open issues)

● Limitations, Need for Community + Manufacturer Cooperation
○ GPUs are not well-documented

■ Reverse-engineering GPU behaviors was necessary
● Not easy to scale, considering the rate of arrival of new GPUs

○ Help from GPU manufacturers can greatly help advance FP debugging

Agenda

● 08:30 : Introduction
● 08:35 : FPChecker
● 09:35 : NixNan (Part-1)
● 09:55 : Fill Survey
● 10:00 : Coffee Break
● 10:30 : Brief Recap
● 10:35 : NixNan (Part-2)
● 11:05 : FloatGuard
● 11:50 : Closing Remarks
● 11:55 : Fill Survey

FloatGuard: Efficient Whole-Program Detection
of Floating-Point Exceptions in AMD GPUs

Dolores Miao (UC Davis)
Ignacio Laguna (LLNL)
Cindy Rubio-González (UC Davis)

Tutorial @ SC25
St. Louis, MO, USA, 11.16.2025

47

AMD GPUs Gaining Traction in HPC

● Supercomputers like El Capitan and Frontier use AMD GPUs
○

● AMD GPU computing toolchain is maturing: ROCm
○ HIP kernel language with Clang compiler
○ Debugging tools such as ROCgdb

● Arising need in debugging numerical code

48

Automated FP Exception Detection

1. Dinda et al. 2020. Spying on the Floating Point Behavior of Existing, Unmodified Scientific Applications. In HPDC. ACM, 5–16.
2. Laguna et al. 2022. FPChecker: Floating-Point Exception Detection Tool and Benchmark for Parallel and Distributed HPC. In IISWC. IEEE, 39–50.
3. Li et al. 2023. Design and Evaluation of GPU-FPX: A Low-Overhead tool for Floating-Point Exception Detection in NVIDIA GPUs. In HPDC. ACM, 59–71. 49

Platform FP Exception
Hardware

Tools /
Approach Mechanism & Notes

CPUs (x86-64) ✅registers and traps FPSpy [1] /
FPVM

Uses %mxcsr and signal-based trap-and-emulate to track
problems in unmodified binaries.

NVIDIA GPUs
(CUDA) ❌ No hardware FPChecker [2],

GPU-FPX [3] Compiler or binary instrumentation; high overhead

AMD GPUs ✅registers and traps ??? (How can we leverage AMD’s exception registers to
natively track exceptions in GPU kernels?)

Floating-Point Exceptions on AMD GPUs

Exception Type Abbr. Trap Mode Descriptions

invalid operation NAN 0 12 NaN as result, i.e. 0/0

input denormal IN_SUB 1 13 Subnormal number in operand

divide by zero DIV0 2 14 Division by zero, i.e. 10.0/0.0

overflow INF 3 15 Result outside of range expressed by FP type

underflow OUT_SUB 4 16 Subnormal number in result

inexact 5 5 17 Result not precisely represented, rounding is involved

int. divide by zero INT_DIV0 6 18 Integer division by zero, i.e. 10/0

Exception types
not in IEEE 754

50

Floating-Point Exception Registers on AMD GPUs

● Mode register
○ Individually enable/disable types of exceptions
○ Reset at the beginning of every GPU kernel

● Trap status register
○ Accumulate exception state after they are encountered
○ Can be cleared at any point

51

Live Demo 1 - Detecting FP Exceptions Manually

52

Prerequisite: AMD GPU + ROCm environment

1. Compile sample program
2. Run ROCgdb with the sample program; no exceptions
3. Use “b [kernel name]” to add breakpoints, then run the program again
4. When program is stopped, change mode register value
5. Exception occurs

Challenges using FP Exception Registers

What can we conclude from our demo?
1.Exception trapping is off by default in kernels

Need to manually enable in each kernel thread

2.Program counter after a trap may be delayed
3.Program state unrecoverable with trapped exception

Difficult to track exception after the first

Conclusion: debugging manually is too time-consuming and thus calls for an
automated approach

53

FloatGuard: first tool to detect floating-point exceptions on
AMD GPUs

54

main.c
kernel_1.c
kernel_2.c
...

FloatGuard
x1th inst.: kernel_1.c:y1
x2th inst.: kernel_1.c:y2
x3th inst.: kernel_2.c:y3
...

main 0.1 0.2

FloatGuard Workflow

55

Main steps:

● Compile source files to assembly (*.s) instead of
objects (*.o)

● Inject instrumentation code into assembly
● Link to generate executables with code

instrumentation

Our method has several advantages:

● Inject code after all optimization passes in both
frontend and backend are finished

● Compiler agnostic
● Only requires changing compiler in build scripts

56

Code Instrumentation

● At the beginning of kernels, enable exceptions
● Around code locations with previously reported exception

○ Disable before entering, enable after exiting

enable exception; set to 0x2F0 to disable exception
s_mov_b32 s31, 0x5F2F0
s_setreg_b32 hwreg(HW_REG_MODE), s31
clear trap status flags to report exception types correctly
s_setreg_imm32_b32 hwreg(HW_REG_TRAPSTS, 0, 7), 0

57

Code Instrumentation - Assembly Injection

● Run program until exception occur,
record location

● Rerun assembly code instrumentation
with updated info

● Link and run program again
● Rinse and repeat until no further

exception is triggered

58

Testing Framework

Live Demo 2 - Running FloatGuard on Sample

Prerequisite: AMD GPU + Linux + ROCm environment (rocm + rocm-llvm-dev)
Clone code from here: https://github.com/LLNL/FloatGuard (sc25 branch)

1. Go to sample directory
2. Run: python3 [FloatGuard dir]/gdb_script/time_measure.py
3. Inspect results in the results/ directory

59

https://github.com/LLNL/FloatGuard

Setup Your Code for FloatGuard

● Replace the compiler in your Makefile with our wrapper script

HIPCC = [FloatGuard Directory]/gdb_script/hipcc_wrapper.sh

● Some Makefile projects are small and only has one source file, and one
command to compile and link the program. For those, make sure your compile
and link commands are separate:

${HIPCC} ${HIPFLAGS} -c main.cpp -o main.o
${HIPCC} ${HIPFLAGS} -c other.cpp -o other.o
${HIPCC} ${LINKFLAGS} main.o other.o -o main

60

Setup Your Code for FloatGuard

● For CMake projects, replace the compiler in CMakeLists.txt

set(CMAKE_CXX_COMPILER [FloatGuard Dir]/gdb_script/hipcc_wrapper.sh)

● Create a setup.ini file in the root directory of your code project. For CMake
projects, put the CMake command that creates project and compile here.

[DEFAULT]
compile = # the command line to compile the executable
run = # the command line to run the executable
clean = # the command line to clean the executable

61

Live Demo 3 - Running FloatGuard on Benchmarks

Prerequisite: AMD GPU + Linux + ROCm environment (rocm + rocm-llvm-dev)

1. Go to [benchmark directory]
2. Run: python3 [FloatGuard dir]/gdb_script/time_measure.py
3. Inspect results in the results/ directory

Benchmark shown:
● rodinia/cfd
● PolyBench-ACC/lu

62

Thank you!

Correspondence: Dolores Miao (wjmiao@ucdavis.edu /
captainmieu@gmail.com)
Code repository: https://github.com/LLNL/FloatGuard

Q
R code for CV
I am currently seeking postdoc/
academic/industry research
opportunities—feel free to connect!

63

mailto:wjmiao@ucdavis.edu
mailto:captainmieu@gmail.com
https://github.com/LLNL/FloatGuard

Agenda

● 08:30 : Introduction
● 08:35 : FPChecker
● 09:35 : NixNan (Part-1)
● 09:55 : Fill Survey
● 10:00 : Coffee Break
● 10:30 : Brief Recap
● 10:35 : NixNan (Part-2)
● 11:05 : FloatGuard
● 11:50 : Closing Remarks
● 11:55 : Fill Survey

