
http://fpanalysistools.org/

Precimonious
Tuning Assistant for Floating-

Point Precision

Michael Bentley, Ian Briggs, Ganesh Gopalakrishnan
University of Utah

1

Ignacio Laguna, Harshitha Menon, Tristan Vanderbruggen
Lawrence Livermore National Laboratory

Cindy Rubio-González
University of California at Davis

This work was supported by through the X-Stack program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research under collaborative agreement
SC0008699, NSF grant 1750983, and a gift from Oracle.

http://fpanalysistools.org/

Floating-Point Precision Tuning

2

• Floating-point (FP) arithmetic used in variety of domains

• Reasoning about FP programs is difficult
o Large variety of numerical problems
o Most programmers are not experts in FP

• Common practice: use highest available precision
o Disadvantage: more expensive!

• Goal: automated technique to assist in tuning floating-point precision

http://fpanalysistools.org/

Example: Arc Length

• Consider the problem of finding the arc length of the function

• Summing for into n subintervals
n�1X

k=0

p
h2 + (g(xk+1)� g(xk))2 h = ⇡/n xk = khwith and

Precision Slowdown Result

double-double 20X 5.795776322412856

double 1X 5.795776322413031

mixed precision < 2X 5.795776322412856

g(x) = x+
X

0k5

2�k sin(2kx)

xk 2 (0,⇡)

1

2

3

3

http://fpanalysistools.org/

long double g(long double x) {
int k, n = 5;
long double t1 = x;
long double d1 = 1.0L;

for(k = 1; k <= n; k++) {
...

}
return t1;

}

int main() {
int i, n = 1000000;
long double h, t1, t2, dppi;
long double s1;
...
for(i = 1; i <= n; i++) {
t2 = g(i * h);
s1 = s1 + sqrt(h*h + (t2 - t1)*(t2 - t1));
t1 = t2;

}
// final answer stored in variable s1
return 0;

}

Example: Arc Length

4

Mixed Precision
Program

http://fpanalysistools.org/

TYPE
CONFIGURATION

PRECIMONIOUS

TEST
INPUTS

SOURCE
CODE

MODIFIED
PROGRAM

Dynamic Analysis for Floating-Point Precision Tuning

Precimonious
“Parsimonious or Frugal with Precision”

Annotated with
error threshold

Less Precision

Speedup

Modified program in
executable format

5

http://fpanalysistools.org/

Challenges for Precision Tuning

● Searching efficiently over variable types and function
implementations

○ Naïve approach -> exponential time
○ 19,683 configurations for arclength program (39)
○ 11 hours 5 minutes
○ Global minimum vs. Local minimum

● Evaluating type configurations
o Less precision not necessarily faster
o Based on runtime, energy consumption, etc.

● Determining accuracy constraints
o How accurate must the final result be?
o What error threshold to use?

6

Automated

Specified by the user

http://fpanalysistools.org/

Precimonious Search Algorithm

● Based on Delta Debugging Algorithm (TSE’02)
● Our definition of a change

○ Lowering the precision of a floating-point variable in the program
§ Example: double x -> float x

● Main idea
o We can do better than making a change at the time
o Start by dividing the change set into two equally sized subsets
o Narrow the search to the subset that satisfies the success criteria
o Otherwise, increase the number of subsets

● Our success criteria
o Resulting program produces an answer within the given error threshold
o Resulting program is faster than original program

● Find local minimum
o Lowering the precision of any one more variable violates the success criteria

7

http://fpanalysistools.org/

✘

double
precision

single
precision

Searching for Type Configuration

8

http://fpanalysistools.org/

✘

double
precision

single
precision

✘ ✘

Searching for Type Configuration

9

http://fpanalysistools.org/

✘

double
precision

single
precision

✘ ✘

Searching for Type Configuration

10

http://fpanalysistools.org/

✘

double
precision

single
precision

✘ ✘

Searching for Type Configuration

11

double
precision

http://fpanalysistools.org/

✘

double
precision

single
precision

✘ ✘

✘

Searching for Type Configuration

12

http://fpanalysistools.org/

✘

double
precision

single
precision

✘ ✘

✘

Searching for Type Configuration

13

http://fpanalysistools.org/

✘single
precision

✘ ✘

✘
…Failed configurations

Proposed configuration

Searching for Type Configuration

14

double
precision

http://fpanalysistools.org/

Applying Type Configuration

● Automatically generate program variants
○ Reflect type configurations produced by the algorithm

● Intermediate representation
o LLVM IR

● Transformation rules for each LLVM instruction
o alloca, load, store, fadd, fsub, fpext, fptrunc, etc.
o Changes equivalent to modifying the program at the source level
o Clang plugin to provide modified source code (not discussed today)

● Able to run resulting modified program
o Evaluate type configuration: accuracy & performance

15

http://fpanalysistools.org/

Limitations

● Type configurations rely on inputs tested
○ No guarantees if worse conditioned input
○ Could be combined with input generation tools (e.g., S3FP)

● Getting trapped in local minimum
● Analysis scalability

o Approach does not scale well for long-running applications
o Need to reduce search space and reduce number of runs
o Check out our follow up work on Blame Analysis (ICSE’16)

● Analysis effectiveness
o Approach does not exploit relationship among variables
o Check out our follow up work on HiFPTuner (ISSTA’18)

16

http://fpanalysistools.org/

Questions?

17

Source code available:
https://github.com/corvette/precimonious

https://github.com/LLNL/FPChecker

http://fpanalysistools.org/

Exercises

18

http://fpanalysistools.org/

Exercises with Precimonious

1. Run Precimonious on sample program funarc
2. Run Precimonious on sample program simpsons

19

Directory Structure

/Module-Precimonious
|---/exercise-1
|---/exercise-2

http://fpanalysistools.org/

Exercise 1

20

http://fpanalysistools.org/

Step 1: Build Precimonious

21

● Open setup.sh file
● Precimonious uses LLVM

and is built using scons
● Execute :

○ $./setup.sh

Success building and running tests

http://fpanalysistools.org/

Step 2: Annotate Program (already done)

● Execute :
○ $ cd exercise-1
○ $ ls

22

● Open funarc.c file

The program we will tune:

Accuracy logging & checking

Performance logging

http://fpanalysistools.org/

Step 3: Compile Program with Clang

● Execute :
○ $ make clean
○ $ make

23

● Creates LLVM bitcode
file and optimized
executable for later use

http://fpanalysistools.org/

Step 4: Run Analysis on Program

● Execute :
○ $./run-analysis.sh funarc

24

Sample output:

Type changes are listed for each
explored configuration

Suggested type configuration

http://fpanalysistools.org/

Step 4: Run Analysis – Configuration File

● Open config_funarc.json
● Original type configuration

25

http://fpanalysistools.org/

Step 4: Run Analysis – Search File

● Open search_funarc.json
● Search space file

26

● To exclude functions edit
exclude.txt

● To exclude variables edit
exclude_local.txt

● Or you can directly edit
search file prior to analysis

http://fpanalysistools.org/

Step 4: Run Analysis – Output Files

● Execute :
○ $ cd results
○ $ ls

27

http://fpanalysistools.org/

Step 4: Run Analysis – Output Files

● Open dd2_valid_funarc.bc.json: suggested configuration file in JSON format
● Open dd2_diff_funarc.bc.json: summary of type changes

28

http://fpanalysistools.org/

Step 5: Apply Result Configuration & Compare Performance

● Execute :
○ $./run-config.sh funarc

29

● Execute :
○ $ time ./original_funarc.out
○ $ time ./tuned_funarc.out

http://fpanalysistools.org/

Exercise 2

30

http://fpanalysistools.org/

Exercise 2: Run Precimonious on simpsons program

31

● Execute :
○ cd ../exercise-2
○ make clean
○ make
○ ./run-analysis.sh simpsons
○ ./run-config.sh simpsons

● Open results/dd2_valid_simpsons.bc.json to see configuration in JSON format
● Open results/dd2_diff_simpsons.bc.json to see difference between original

program and proposed configuration

● Open exercise-2/simpsons.c to see annotated program

http://fpanalysistools.org/

Collaborators

Cuong
Nguyen

Diep
Nguyen

James
Demmel

William
Kahan

Koushik
Sen

David
Bailey

Costin
Iancu

David
Hough

University of California, Berkeley

OracleLawrence Berkeley National Lab

Ben
Mehne

Wim
Lavrijsen

32

http://fpanalysistools.org/

Questions?

33

Source code available:
https://github.com/corvette/precimonious

https://github.com/corvette/precimonious

