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Floating-Point Precision Tuning
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• Floating-point (FP) arithmetic used in variety of domains

• Reasoning about FP programs is difficult
o Large variety of numerical problems
o Most programmers are not experts in FP

• Common practice: use highest available precision
o Disadvantage: more expensive!

• Goal: automated technique to assist in tuning floating-point precision
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Example: Arc Length

• Consider the problem of finding the arc length of the function

• Summing for                       into n subintervals                        
n�1X

k=0

p
h2 + (g(xk+1)� g(xk))2 h = ⇡/n xk = khwith and

Precision Slowdown Result

double-double 20X 5.795776322412856

double 1X 5.795776322413031

mixed precision < 2X 5.795776322412856

g(x) = x+
X

0k5

2�k sin(2kx)

xk 2 (0,⇡)
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long double g(long double x) {
int k, n = 5;
long double t1 = x;
long double d1 = 1.0L;

for(k = 1; k <= n; k++) {
...

}
return t1;

}

int main() {
int i, n = 1000000;
long double h, t1, t2, dppi;
long double s1;
...
for(i = 1; i <= n; i++) {
t2 = g(i * h);
s1 = s1 + sqrt(h*h + (t2 - t1)*(t2 - t1));
t1 = t2;

}
// final answer stored in variable s1
return 0;

}

Example: Arc Length
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Mixed Precision 
Program
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TYPE 
CONFIGURATION

PRECIMONIOUS

TEST 
INPUTS

SOURCE 
CODE

MODIFIED
PROGRAM

Dynamic Analysis for Floating-Point Precision Tuning

Precimonious
“Parsimonious or Frugal with Precision”

Annotated with 
error threshold

Less Precision

Speedup

Modified program in 
executable format
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Challenges for Precision Tuning

● Searching efficiently over variable types and function 
implementations

○ Naïve approach -> exponential time
○ 19,683 configurations for arclength program (39)
○ 11 hours 5 minutes
○ Global minimum vs. Local minimum

● Evaluating type configurations
o Less precision not necessarily faster
o Based on runtime, energy consumption, etc.

● Determining accuracy constraints
o How accurate must the final result be?
o What error threshold to use?
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Automated

Specified by the user
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Precimonious Search Algorithm

● Based on Delta Debugging Algorithm (TSE’02)
● Our definition of a change

○ Lowering the precision of a floating-point variable in the program
§ Example: double x -> float x

● Main idea
o We can do better than making a change at the time
o Start by dividing the change set into two equally sized subsets
o Narrow the search to the subset that satisfies the success criteria
o Otherwise, increase the number of subsets

● Our success criteria
o Resulting program produces an answer within the given error threshold
o Resulting program is faster than original program

● Find local minimum
o Lowering the precision of any one more variable violates the success criteria
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✘

double 
precision

single 
precision

Searching for Type Configuration
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✘single 
precision

✘ ✘

✘
…Failed configurations

Proposed configuration

Searching for Type Configuration

14

double 
precision
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Applying Type Configuration

● Automatically generate program variants
○ Reflect type configurations produced by the algorithm

● Intermediate representation
o LLVM IR

● Transformation rules for each LLVM instruction
o alloca, load, store, fadd, fsub, fpext, fptrunc, etc.
o Changes equivalent to modifying the program at the source level
o Clang plugin to provide modified source code (not discussed today)

● Able to run resulting modified program
o Evaluate type configuration: accuracy & performance
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Limitations

● Type configurations rely on inputs tested
○ No guarantees if worse conditioned input
○ Could be combined with input generation tools (e.g., S3FP)

● Getting trapped in local minimum
● Analysis scalability

o Approach does not scale well for long-running applications
o Need to reduce search space and reduce number of runs
o Check out our follow up work on Blame Analysis (ICSE’16)

● Analysis effectiveness
o Approach does not exploit relationship among variables
o Check out our follow up work on HiFPTuner (ISSTA’18)
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Questions?

17

Source code available:
https://github.com/corvette/precimonious

https://github.com/LLNL/FPChecker
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Exercises
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Exercises with Precimonious

1. Run Precimonious on sample program funarc
2. Run Precimonious on sample program simpsons
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Directory Structure

/Module-Precimonious
|---/exercise-1
|---/exercise-2
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Exercise 1
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Step 1: Build Precimonious
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● Open setup.sh file
● Precimonious uses LLVM 

and is built using scons
● Execute :   

○ $ ./setup.sh

Success building and running tests
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Step 2: Annotate Program (already done)

● Execute : 
○ $ cd exercise-1
○ $ ls
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● Open funarc.c file

The program we will tune:

Accuracy logging & checking

Performance logging
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Step 3: Compile Program with Clang

● Execute : 
○ $ make clean
○ $ make
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● Creates LLVM bitcode
file and optimized 
executable for later use
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Step 4: Run Analysis on Program

● Execute : 
○ $ ./run-analysis.sh funarc
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Sample output:

Type changes are listed for each 
explored configuration

Suggested type configuration
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Step 4: Run Analysis – Configuration File

● Open config_funarc.json
● Original type configuration 
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Step 4: Run Analysis – Search File

● Open search_funarc.json
● Search space file
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● To exclude functions edit 
exclude.txt

● To exclude variables edit 
exclude_local.txt

● Or you can directly edit 
search file prior to analysis
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Step 4: Run Analysis – Output Files

● Execute : 
○ $ cd results
○ $ ls
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Step 4: Run Analysis – Output Files

● Open  dd2_valid_funarc.bc.json:  suggested configuration file in JSON format 
● Open dd2_diff_funarc.bc.json: summary of type changes
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Step 5: Apply Result Configuration & Compare Performance

● Execute : 
○ $ ./run-config.sh funarc
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● Execute : 
○ $ time ./original_funarc.out
○ $ time ./tuned_funarc.out
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Exercise 2
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Exercise 2: Run Precimonious on simpsons program
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● Execute : 
○ cd ../exercise-2
○ make clean
○ make
○ ./run-analysis.sh simpsons
○ ./run-config.sh simpsons

● Open results/dd2_valid_simpsons.bc.json to see configuration in JSON format
● Open results/dd2_diff_simpsons.bc.json to see difference between original 

program and proposed configuration 

● Open exercise-2/simpsons.c to see annotated program 
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Questions?
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Source code available:
https://github.com/corvette/precimonious

https://github.com/corvette/precimonious

