Tutorial on Floating-Point Analysis and Reproducibility
Tools for Scientific Software

Ignacio Laguna, Harshitha Menon
Lawrence Livermore National Laboratory

Michael Bentley, Ian Briggs, Pavel Panchekha, Ganesh Gopalakrishnan
University of Utah

Hui Guo, Cindy Rubio González
University of California at Davis

Michael O. Lam
James Madison University
Objective of the Tutorial

Demonstrate tools can be used today

Floating-Point Analysis
- GPUs
- Exceptions
- Compilers
- Optimizations
- Mixed-precision
- Benchmarks

Reproducibility & non-determinism (ND)
- Data races
- Floating-point ND
- MPI & OpenMP
Everything is here:

fpanalysistools.org

Tutorial Material → SC19
AWS is Used to Run Exercises

- You will need:
 - Username, password, IP address
- Accessing the AWS instance via ssh:

 ssh [USERNAME]@[IP ADDRESS]
Getting Your Credentials for AWS

Password: fptutorial1117

FP Tools Credential Distributor

Here you can request a set of credentials to use with the SC19 Tutorial, “Floating-Point Analysis and Reproducibility Tools for Scientific Software” (see fpanalysistools.org), featuring FLUT, Archer, RetMPI, FPChecker, Precimous, and ADAPT.

Note: this site requires the use of cookies.

Get New Username and Password

FP Tools Credential Distributor

ip address: 18.189.182.165
username: bob
password: sc19fptutorial
Directory Structure

/home/user1/
 |-- Module-TOOL1
 | |-- exercise-1
 | |-- exercise-2
 | |-- exercise-3
 |-- Module-TOOL2
 | |-- exercise-1
 | |-- exercise-2
 | |-- exercise-3
 ...

http://fpanalysistools.org/ → Tutorial Material → SC19
Morning Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 - 8:40am</td>
<td>Introduction (housekeeping)</td>
</tr>
<tr>
<td>8:40 - 8:55am</td>
<td>Floating-point background</td>
</tr>
<tr>
<td>8:55 - 9:35am</td>
<td>FPChecker: floating-point exceptions, GPUs, CUDA</td>
</tr>
<tr>
<td>9:35 - 10:00am</td>
<td>ARCHER: data races, OpenMP</td>
</tr>
<tr>
<td>10:00 - 10:30am</td>
<td>Break</td>
</tr>
<tr>
<td>10:30 - 11:30am</td>
<td>FLiT: floating-point variability, compiler optimizations</td>
</tr>
<tr>
<td>11:30 - 12:00pm</td>
<td>ReMPI: MPI, floating-point variability</td>
</tr>
<tr>
<td>12:00 - 1:30pm</td>
<td>Lunch Break</td>
</tr>
</tbody>
</table>
Afternoon Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30 - 1:35pm</td>
<td>Afternoon overview</td>
</tr>
<tr>
<td>1:35 - 2:45pm</td>
<td>Precimonious & HiFPTuner: mixed-precision tuning</td>
</tr>
<tr>
<td>2:45 - 3:00pm</td>
<td>FPBench: benchmarks for floating-point</td>
</tr>
<tr>
<td>3:00 - 3:30pm</td>
<td>Break</td>
</tr>
<tr>
<td>3:30 - 4:50pm</td>
<td>ADAPT, FloatSmith: algorithmic differentiation, tuning</td>
</tr>
<tr>
<td>4:50 - 5:00pm</td>
<td>Questions & Answers</td>
</tr>
</tbody>
</table>