Tools and Techniques for Floating-Point Analysis

Ignacio Laguna

Jan 7, 2020 @ LLNL

Modified version of:

IDEAS Webinar
Best Practices for HPC Software Developers Webinar Series
October 16, 2019

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-PRES-788144).
What I will Present

1. Some interesting areas of floating-point analysis in HPC

2. Potential issues when writing floating-point code
 ○ Will present *principles*

3. Some tools (and techniques) to help programmers
 ○ Distinction between *research* and *tools*

Focus on high-performance computing applications
A Hard-To-Debug Case

Hydrodynamics mini application

Early development and porting to new system (IBM Power8, NVIDIA GPUs)

- clang –O1: |e| = 129941.1064990107
- clang –O2: |e| = 129941.1064990107
- clang –O3: |e| = 129941.1064990107
- gcc –O1: |e| = 129941.1064990107
- gcc –O2: |e| = 129941.1064990107
- gcc –O3: |e| = 129941.1064990107
- xlc –O1: |e| = 129941.1064990107
- xlc –O2: |e| = 129941.1064990107
- xlc –O3: |e| = 144174.9336610391

It took several weeks of effort to debug it

http://fpanalysistools.org/

- **Formats:** how to represent floating-point data
- **Special numbers:** Infinite, NaN, subnormal
- **Rounding rules:** rules to be satisfied during rounding
- **Arithmetic operations:** e.g., trigonometric functions
- **Exception handling:** division by zero, overflow, ...
Do Programmers Understand IEEE Floating Point?

- Survey taken by 199 software developers
- Developers do little better than chance when quizzed about core properties of floating-point, yet are confident

Some misunderstood aspects:

- Standard-compliant optimizations (-O2 versus –O3)
- Use of fused multiply-add (FMA) and flush-to-zero
- Can fast-math result in non-standard-compliant behavior?
Myth: It’s Just Floating-Point Error...Don’t Worry

Many factors are involved in unexpected numerical results

- Round-off error
- Floating-point precision
- Compiler (proprietary vs. open-source)
- Optimizations (be careful with -O3)
- Architecture (CPU ≠ GPU)
- Language semantics (FP is underspecified in C)
What Floating-Point Code Can be Produce Variability?

Random Test

Compiler 1 → Run → Result 3.1415

Compiler 2 → Run → Result 3.1498

VARITY tool
Example 1: How Optimizations Can Bite Programmers

```c
void compute(double comp, int var_1, double var_2,
  double var_3, double var_4, double var_5, double var_6,
  double var_7, double var_8, double var_9, double var_10,
  double var_11, double var_12, double var_13,
  double var_14) {
  double tmp_1 = +1.7948E-306;
  comp = tmp_1 + +1.2280E305 - var_2 +
    ceil((+1.0525E-307 - var_3 / var_4 / var_5));
  for (int i=0; i < var_1; ++i) {
    comp += (var_6 * (var_7 - var_8 - var_9));
  }
  if (comp > var_10 * var_11) {
    comp = (-1.7924E-320 - (+0.0 / (var_12/var_13)));
    comp += (var_14 * (+0.0 - -1.4541E-306));
  }
  printf("%.17g\n", comp);
}
```

Input

```
0.0 5 -0.0 -1.3121E-306 +1.9332E-313 +1.0351E-306
+1.1275E172 -1.7335E113 +1.2916E306 +1.9142E-319
+1.1877E-306 +1.2973E-101 +1.0607E-181 -1.9621E-306
-1.5913E118-03
```

IBM Power9, V100 GPUs (LLNL Lassen)

clang –O3

```
$ ./test-clang
NaN
```

nvcc –O3

```
$ ./test-nvcc
-2.3139093300000002e-188
```
Example 2: Can –O0 hurt you?

Random test

```c
void compute(double tmp_1, double tmp_2, double tmp_3, double tmp_4, double tmp_5, double tmp_6) {
  if (tmp_1 > (-1.9275E54 * tmp_2 + (tmp_3 - tmp_4 * tmp_5)))
  { 
    tmp_1 = (0 * tmp_6);
  }
  printf("%.17g
", tmp_1);
  return 0;
}
```

Input

<table>
<thead>
<tr>
<th>clang -O0</th>
<th>gcc -O0</th>
<th>xlc -O0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$./test-clang</td>
<td>1.3437999999999999e+306</td>
<td></td>
</tr>
<tr>
<td>$./test-gcc</td>
<td>1.3437999999999999e+306</td>
<td></td>
</tr>
<tr>
<td>$./test-xlc</td>
<td>-0</td>
<td></td>
</tr>
</tbody>
</table>

IBM Power9 (LLNL Lassen)

Fused multiply-add (FMA) is used by default in XLC

Principle 2

Be aware of the default behavior of compiler optimizations

http://fpanalysistools.org/
Math Functions: C++ vs C

C
Using `<math.h>`

```c
float a = 1.0f;
double b = sin(a);
```

0.8414709848078965

• `<math.h>` provides “float sinf(float)”
• Variable a is extended to double -> double-precision sin() is called

C++
Using `<cmath>`

```cpp
float a = 1.0f;
double b = sin(a);
```

0.84147095680236816

• `<cmath>` provides “float sin(float)” in the std namespace
• Single-precision sin() is called -> result is extended to double precision

What is the most accurate?
FORTRAN: Compiler is Free to Apply Several Transformations

- FORTRAN compiler is free to apply mathematical identities
 - As long are they are valid in the Reals
 - $a/b \cdot c/d \rightarrow (a/b) \cdot (c/d)$ or $(a\cdot c) / (b\cdot d)$
 - Mathematically equivalent ≠ same round-off error

- Due to compiler freedom, performance of FORTRAN is likely to be higher than C

<table>
<thead>
<tr>
<th>Expression</th>
<th>Allowable alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>X+Y</td>
<td>Y+X</td>
</tr>
<tr>
<td>X*Y</td>
<td>Y*X</td>
</tr>
<tr>
<td>-X + Y</td>
<td>Y-X</td>
</tr>
<tr>
<td>X+Y+Z</td>
<td>X + (Y + Z)</td>
</tr>
<tr>
<td>X-Y+Z</td>
<td>X - (Y - Z)</td>
</tr>
<tr>
<td>X*A/Z</td>
<td>X * (A / Z)</td>
</tr>
<tr>
<td>XY - XZ</td>
<td>X * (Y - Z)</td>
</tr>
<tr>
<td>A/B/C</td>
<td>A / (B * C)</td>
</tr>
<tr>
<td>A / 5.0</td>
<td>0.2 * A</td>
</tr>
</tbody>
</table>

To summarize, FORTRAN has much more freedom when compiling floating-point expressions than C. As a consequence, the performance of a FORTRAN program is likely to be higher than that of the same program written in C.

6.4.2 IEEE 754 support in FORTRAN

Section 13 of the FORTRAN standard [276], Intrinsic procedures and modules, defines a machine model of the real numbers that corresponds to normal floating-point numbers:

The model set for real x is defined by

$$x = \begin{cases} 0 \text{ or } s \times b^e \times \sum_{k=1}^{\infty} f_k \times b^{-k} \end{cases}$$

http://fpanalysisstools.org/
How is Floating-Point Specified in Languages?

1. C/C++: moderately specified
2. FORTRAN: lower than C/C++
3. Python: underspecified

Python documentation warns about floating-point arithmetic:

float

These represent machine-level double precision floating point numbers. You are at the mercy of the underlying machine architecture (and C or Java implementation) for the accepted range and handling of overflow. Python does not support single-precision floating point numbers; the savings in processor and memory usage that are usually the reason for using these is dwarfed by the overhead of using objects in Python, so there is no reason to complicate the language with two kinds of floating point numbers.

Numpy package provides support for all IEEE formats
H.2. Floating-Point Standard

All compute devices follow the IEEE 754-2008 standard for binary floating-point arithmetic with the following deviations:

- There is no dynamically configurable rounding mode; however, most of the operations support multiple IEEE rounding modes, exposed via device intrinsics;
- **There is no mechanism for detecting that a floating-point exception has occurred and all operations behave as if the IEEE-754 exceptions are always masked, and deliver the masked response as defined by IEEE-754 if there is an exceptional event; for the same reason, while SNaN encodings are supported, they are not signaling and are handled as quiet;**
- The result of a single-precision floating-point operation involving one or more input NaNs is the quiet NaN of bit pattern 0x7ffffff;
- Double-precision floating-point absolute value and negation are not compliant with IEEE-754 with respect to NaNs; these are passed through unchanged;
Tools & Techniques for Floating-Point Analysis

GPU Exceptions
- Floating-point exceptions
- GPUs, CUDA

Compiler Variability
- Compiler-induced variability
- Optimization flags

Mixed-Precision
- GPU mixed-precision
- Performance aspects

All tools available here
http://fpanalysisstools.org/
Solved Problem: Trapping Floating-Point Exceptions in CPU Code

- When a CPU exceptions occurs, it is signaled
 - System sets a flag or takes a trap
 - Status flag FPSCR set by default
- The system (e.g., Linux) can also cause the floating-point exception signal to be raised
 - SIGFPE

CUDA has Limited Support for Detecting Floating-Point Exceptions

- CUDA: programming language of NVIDIA GPUs
- CUDA has no mechanism to detect exceptions
 - As of CUDA version: 10
- All operations behave as if exceptions are masked

You may have “hidden” exceptions in your CUDA program
Detecting the Result of Exceptions in a CUDA Program

- Place `printf` statements in the code (as many as possible)

```c
double x = 0;
x = x/x;
printf("res = %e\n", x);
```

- Programming checks are available in CUDA:

```c
__device__ int isnan ( float a );
__device__ int isnan ( double a );

- Also available `isinf`

These solutions are not ideal; they require significant programming effort
FPChecker

- Automatically detect the location of FP exceptions in NVIDIA GPUs
  - Report file & line number
  - No extra programming efforts required
- Report input operands
- Use software-based approach (compiler)
- Analyze optimized code

http://fpanalysisistools.org/
Workflow of FPChecker
Example of Compilation Configuration for FPChecker

Use clang instead of NVCC

#CXX = nvcc
CXX = /path/to/clang++
CUFLAGS = -std=c++11 --cuda-gpu-arch=sm_60 -g
FPCHECK_FLAGS = -Xclang -load -Xclang /path/libfpchecker.so \
    -include Runtime.h -I/path/fpchecker/src
CXXFLAGS += $(FPCHECK_FLAGS)

• Load instrumentation library
• Include runtime header file
We report **Warnings** for Latent Underflows/Overflows

- **\[ -\infty \rightarrow 0 \rightarrow +\infty \]**
  - Normal
  - Subnormal
  - Subnormal
  - Normal

- **Danger zone**

- `-D FPC_DANGER_ZONE_PERCENT=x.x:`
  a. Changes the size of the danger zone.
  b. By default, `x.x` is 0.10, and it should be a number between 0.0 and 1.0.
Example of Error Report

FPChecker Error Report

Error : Underflow
Operation : MUL (9.999888672e-321)
File : dot_product_raja.cpp
Line : 32

Slowdown: 1.2x – 1.5x
Tools & Techniques for Floating-Point Analysis

GPU Exceptions
- Floating-point exceptions
- GPUs, CUDA

Compiler Variability
- Compiler-induced variability
- Optimization flags

Mixed-Precision
- GPU mixed-precision
- Performance aspects
A Hard-To-Debug Case

How to debug it?

Hydrodynamics mini application

Early development and porting to new system (IBM Power8, NVIDIA GPUs)

clang –O1: $|e| = 129941.1064990107$
clang –O2: $|e| = 129941.1064990107$
clang –O3: $|e| = 129941.1064990107$
gcc –O1: $|e| = 129941.1064990107$
gcc –O2: $|e| = 129941.1064990107$
gcc –O3: $|e| = 129941.1064990107$
xlc –O1: $|e| = 129941.1064990107$
xlc –O2: $|e| = 129941.1064990107$
xlc –O3: $|e| = 144174.9336610391$
Root-Cause Analysis Process

Buggy Program → File → Function (code region) → Line of Code
Delta Debugging

- Identifies **input** that makes problem manifest
  - **Input** for us: *file & function*
- Identifies minimum input
- Iterative algorithm
  - Average case: $O(\log N)$
  - Worst case: $O(N)$
Delta Debugging Example

Input: \( \text{func}_1, \text{func}_2, \text{func}_3, \text{func}_4, \text{func}_5, \text{func}_6, \text{func}_7, \text{func}_8 \)

Bug: Wrong results when:
1. \( \text{func}_3 \) and \( \text{func}_7 \) are compiled with high optimization
2. Remaining functions compiled low optimization

Step 1
Split input

\[ \begin{align*}
\text{chunk 1} & \rightarrow \text{low optimization} \\
\text{chunk 2} & \rightarrow \text{high optimization}
\end{align*} \]

\[ \begin{align*}
\text{func}_1, \text{func}_2, \text{func}_3, \text{func}_4 & \quad \text{func}_5, \text{func}_6, \text{func}_7, \text{func}_8
\end{align*} \]

Step 2

\[ \begin{align*}
\text{chunk 1} & \rightarrow \text{high optimization} \\
\text{chunk 2} & \rightarrow \text{low optimization}
\end{align*} \]

\[ \begin{align*}
\text{func}_1, \text{func}_2, \text{func}_3, \text{func}_4 & \quad \text{func}_5, \text{func}_6, \text{func}_7, \text{func}_8
\end{align*} \]
Delta Debugging Example

**Step 3** use chunks of finer granularity

- Chunk 1 can be removed (also chunk 3 later)
- Restart from smaller input  (func$_3$, func$_4$, func$_7$, func$_8$)
- Final result:  func$_3$, func$_7$

chunk 1 → low optimization

func$_1$, func$_2$ / func$_3$, func$_4$ / func$_5$, func$_6$ / func$_7$, func$_8$

chunks 2,3,4 → high optimization

func$_3$, func$_4$, func$_5$, func$_6$, func$_7$, func$_8$
Results: File & Function Isolated

- File: raja/kernels/quad/rQDataUpdate.cpp
- Function: rUpdateQuadratureData2D

Problem goes away when:
- rUpdateQuadratureData2D compiled with –O2
- Other functions with –O3

<table>
<thead>
<tr>
<th>Optimization level</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>-O2</td>
<td></td>
</tr>
<tr>
<td>-O3</td>
<td></td>
</tr>
<tr>
<td>-O3 (except rUpdateQuadratureData2D)</td>
<td></td>
</tr>
</tbody>
</table>
Multiple Levels:

- Determine variability-inducing compilations
- Analyze the tradeoff of reproducibility and performance
- Locate variability by identifying files and functions causing variability

Bisection Method

- baseline (e.g., g++ -00)
- under test (e.g., g++ -03)
- final executable (mixed)
Other Problems: Subnormal Numbers

- Subnormal numbers + -O3 = bad results

**Principle 4**

Avoid subnormal numbers if possible

- **Reason 1**: may impact performance
- **Reason 2**: you lose too much precision
Subnormal Numbers May be Inaccurate

```c
double x = 1/3.0;
printf("Original : %e\n", x);
x = x * 7e-323;
printf("Denormalized: %e\n", x);
x = x / 7e-323;
printf("Restored : %e\n", x);
```

```c
long double x = 1/3.0;
printf("Original : %Le\n", x);
x = x * 7e-323;
printf("Denormalized: %Le\n", x);
x = x / 7e-323;
printf("Restored : %Le\n", x);
```

Original    : 3.333333e-01
Denormalized: 2.470328e-323
Restored    : 3.571429e-01

Original    : 3.333333e-01
Denormalized: 2.305640e-323
Restored    : 3.333333e-01
It can be proved that:

- Assuming that $\text{RN}(\ )$ is the rounding function operation
- If $x, y$ are floating-point numbers, and
- $\text{RN}(x+y)$ is a subnormal number
- Then $\text{RN}(x+y) = x+y$, i.e., it is computed exactly


Subnormal numbers resulting from addition or subtraction are exact

Not necessarily the case for division, multiplication, or other functions
How to Avoid Subnormal Numbers?

● Use higher precision
  ○ Research problem: could we selectively expand precision on some code?
● Scale up, scale down
  ○ Could work for simple problems only
  ○ You lose precision
● Flush underflows to zero
  ○ Doesn’t fix the underlying problem
  ○ Eliminates performance issues
● Algorithmic change
Tools & Techniques for Floating-Point Analysis

- **GPU Exceptions**
  - Floating-point exceptions
  - GPUs, CUDA

- **Compiler Variability**
  - Compiler-induced variability
  - Optimization flags

- **Mixed-Precision**
  - GPU mixed-precision
  - Performance aspects

http://fpanalysistools.org/
How can we take advantage of floating-point mixed-precision?

**FP64 (double precision)**

- 6 digits of accuracy, 10% speedup
- 3 digits of accuracy, 46% speedup

**Mixed-Precision (FP64 & FP32)**
Floating-Point Precision Levels in NVIDIA GPUs Have Increased

FP64:FP32 Performance Ratio

- **Tesla** (2008): 1:8 (FP64:FP32)
- **Fermi** (2009): 1:8 (FP64:FP32)
- **Kepler** (2012): 1:24 (FP64:FP32)
- **Pascal** (2016): 1:2 (FP64:FP32, FP16)

FP32, FP64

Compute capability 1.3

http://fpanalysisistools.org/
Mixed-Precision Programming is Challenging

- Scientific programs have many variables
- \{\text{FP32, FP64}\} precision: \(2^N\) combinations
- \{\text{FP16, FP32, FP64}\} precision: \(3^N\) combinations
Example of Mixed-Precision Tuning

Force computation kernel in **n-body simulation** (CUDA)

```c
__global__ void bodyForce(double *x, double *y, double *z, double *vx, double *vy, double *vz, double dt, int n) {
 int i = blockDim.x * blockIdx.x + threadIdx.x;
 if (i < n) {
 double Fx=0.0; double Fy=0.0; double Fz=0.0;
 for (int j = 0; j < n; j++) {
 double dx = x[j] - x[i];
 double dy = y[j] - y[i];
 double dz = z[j] - z[i];
 double distSqr = dx*dx + dy*dy + dz*dz + 1e-9;
 double invDist = rsqrt(distSqr);
 double invDist3 = invDist * invDist * invDist;
 Fx += dx*invDist3; Fy += dy*invDist3; Fz += dz*invDist3;
 }
 vx[i] += dt*Fx; vy[i] += dt*Fy; vz[i] += dt*Fz;
 }
}
```

![Error Formula](image)

**Error of particle position** 

\[
\left| \frac{x-x_0}{x} \right| + \left| \frac{y-y_0}{y} \right| + \left| \frac{z-z_0}{z} \right|
\]

**(x,y,z): baseline position**  

**(x_0,y_0,z_0): new configuration**
define their own metric for error, however, for this illustrative case, we define the relative error introduced by mixed-precision as:

$$\text{error} = \left( \frac{|x - x_0|}{x} + \frac{|y - y_0|}{y} + \frac{|z - z_0|}{z} \right) \times 100.$$ 

where $x$, $y$, $z$ are the particle positions for the baseline, and $x_0$, $y_0$, $z_0$ are the particle positions for a new configuration.

```c
__global__ void bodyForce(double *x, double *y, double *z, double *vx, double *vy, double *vz, double dt, int n) {
 int i = blockDim.x * blockIdx.x + threadIdx.x;
 if (i < n) {
 double Fx=0.0; double Fy=0.0; double Fz=0.0;
 for (int j=0 ;j<n ;j++) {
 double dx = x[j] - x[i];
 double dy = y[j] - y[i];
 double dz = z[j] - z[i];
 double distSqr = dx*dx + dy*dy + dz*dz + 1e-9;
 double invDist = rsqrt(distSqr);
 double invDist3 = invDist * invDist * invDist;
 Fx += dx*invDist3; Fy += dy*invDist3; Fz += dz*invDist3;
 }
 vx[i] += dt*Fx; vy[i] += dt*Fy; vz[i] += dt*Fz;
 }
}
```

**Table 1.1.** Force computation in an N-body simulation (CUDA)

<table>
<thead>
<tr>
<th>No.</th>
<th>Variables in FP32</th>
<th>Error</th>
<th>Speedup(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>All</td>
<td>15.19</td>
<td>53.70</td>
</tr>
<tr>
<td>2</td>
<td>invDist3</td>
<td>4.08</td>
<td>5.78</td>
</tr>
<tr>
<td>3</td>
<td>distSqr</td>
<td>1.93</td>
<td>-43.35</td>
</tr>
<tr>
<td>4</td>
<td>invDist3, invDist, distSqr</td>
<td>1.80</td>
<td>11.69</td>
</tr>
</tbody>
</table>

This example illustrates that some configurations can produce low performance speedup or even performance degradation; the goal of our approach is to find via static analysis configurations such as 3 and 5 that improve performance and discard cases such as 4.
GPUMixer: Performance-Driven Floating-Point Tuning for GPU Scientific Applications

Ignacio Laguna, Paul C. Wood, Ranvijay Singh, Saurabh Bagchi. GPUMixer: Performance-Driven Floating-Point Tuning for GPU Scientific Applications. ISC High Performance, Frankfurt, Germany, Jun 16-20, 2019 (Best paper award)

http://fpanalysisistools.org/
Precimonious
“Parsimonious or Frugal with Precision”

Dynamic Analysis for Floating-Point Precision Tuning

Annotated with error threshold

SOURCE CODE
TEST INPUTS

PRECIMONIOUS

Less Precision

Speedup

TYPE CONFIGURATION
MODIFIED PROGRAM

Modified program in executable format

Cindy Rubio González
University of California, Davis

http://fpanalysistools.org/
**ADAPT: Algorithmic Differentiation for Error Analysis**

Computer architectures support multiple levels of precision
- Higher precision – improves accuracy
- Lower precision – reduces run time, memory pressure, and energy consumption

**APPROACH**
For a given \( y = f(x) \)
First order Taylor series approximation at \( x = a \)

\[
y = f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \ldots \\
\approx f(a) + f'(a)(x - a).
\]

\( \Delta y = f'(a) \Delta x \)
Obtain \( f'(a) \) using Algorithmic Differentiation (AD)

Mixed precision speedup:
- 1.1x HPCCG (Mantevo benchmark suite)
- 1.2x LULESH

Harshitha Menon et al., ADAPT: Algorithmic Differentiation Applied to Floating-point Precision Analysis. SC’18
https://github.com/LLNL/adapt-fp

http://fpanalysistools.org/
Tutorial on Floating-Point Analysis Tools @ SC19
http://fpanalysistools.org/

- Demonstrates several analysis tools
- Hands-on exercises
- Covers various important aspects

Tutorials
- SC19, Denver, Nov 17th, 2019
- PEARC19, Chicago, Jul 30th, 2019
Some Useful References

**General Guidance**
  - [https://doi.ieeecomputersociety.org/10.1109/IPDPS.2018.00068](https://doi.ieeecomputersociety.org/10.1109/IPDPS.2018.00068)
- Do not use denormalized numbers (CMU, Software Engineering Institute)
  - [https://wiki.sei.cmu.edu/confluence/display/java/NUM54-J.+Do+not+use+denormalized+numbers](https://wiki.sei.cmu.edu/confluence/display/java/NUM54-J.+Do+not+use+denormalized+numbers)
- The Floating-point Guide
  - [https://floating-point-gui.de/](https://floating-point-gui.de/)
- John Farrier “Demystifying Floating Point” (youtube video)
  - [https://www.youtube.com/watch?v=k12BJGSc2Nc&t=2250s](https://www.youtube.com/watch?v=k12BJGSc2Nc&t=2250s)
  - [https://doi.org/10.1145/103162.103163](https://doi.org/10.1145/103162.103163)

**NVIDIA GPUs & Floating-Point**
- Floating Point and IEEE 754 Compliance for NVIDIA GPUs
  - [https://docs.nvidia.com/cuda/floating-point/index.html](https://docs.nvidia.com/cuda/floating-point/index.html)
- Mixed-Precision Programming with CUDA 8
In Summary

- Many factors can affect floating-point results
  - Compilers, hardware, optimizations, precision, parallelism, ...
  - Be aware of how compiler optimizations could change results
- Be aware of default behavior of compiler optimizations
- Be aware of language semantics
- Avoid the use subnormal numbers if possible
- Pay attention to floating-point computations on GPUs
- Mixed precision involves correctness and performance analysis
Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.