TOOLS TO DIAGNOSE AND REPAIR FLOATING-POINT ERRORS IN HETEROGENEOUS COMPUTING HARDWARE AND SOFTWARE

An SC'24 Half-Day Tutorial

ODYSSEY

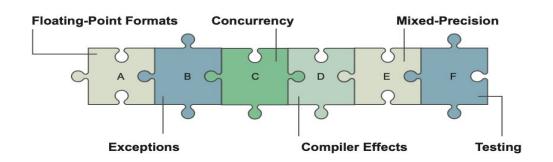
Ben Wang
Ed Misback,
University of
Washington

CIEL

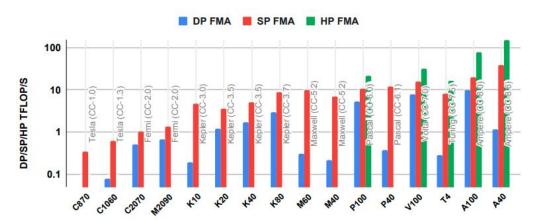
Cindy
Rubio-Gonzalez
Dolores Miao,
University of
California, Davis

Ganesh

Gopalakrishnan
University of
Utah
Xinyi Li
Pacific
Northwest
National
Laboratory



Project Details, Funding Support


ComPort is a DOE XStack Research Project supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research ComPort: Rigorous Testing Methods to Safeguard Software Porting under Award Numbers

- DE-SC0022252 (University of Utah, PI: Ganesh Gopalakrishnan, and Co-PI: Pavel Panchekha)
- SCW 1743 (Lawrence Livermore National Laboratory, PI: Ignacio Laguna)
- SCW 78284 (Pacific Northwest National Laboratory, PI: Ang Li)
- DE-SC0022182 (University of California, Davis, PI: Cindy Rubio-Gonzalez)
- DE-SC0022081 (University of Washington, PI: Zachary Tatlock)
- Webpage for our Project: https://bit.ly/XStack-ComPort-Project
- Question? Email <u>ganesh@cs.utah.edu</u>

Concerns in the Floating-Point Arithmetic

"Guarding Numerics Against Rising Heterogeneity", SC Correctness Workshop 2021 by the Pls

- Basic misunderstandings about FP prevail
 - Need tools to understand, improve code
- Heterogeneity (CPUs/GPUs) the norm
 - Rapidly changing in features
 - AMD GPUs also on the rise
 - Unknown repro when porting
- Mostly undocumented building-blocks
 - Libraries are binary-only (in undocumented assembly-level ISA)
 - Compilers differ, especially across optimization levels
- Various Precision Choices
 - o FP16, FP8
- Built-in Acceleration for matrix operations
 - Tensor cores (NVIDIA)
 - Not fully IEEE compatible
 - Matrix cores (AMD)
- No hardware trapping of exceptions in NVIDIA
 - AMD can trap
 - Effort to use it is non-trivial

Units and Presenters, other PIs Involved

- Odyssey
 - An Interactive Workbench for Floating Point Analysis
 - Zachary Tatlock, PI at UW
 - Pavel Panchekha, Pl at Utah
 - Presenters: Edward Misback and Benjamin Wang, UW
- Ciel
 - Ciel: Expression Isolation of Compiler-Induced Numerical Inconsistencies in Heterogeneous Code
 - Cindy Rubio-Gonzalez, PI at UC Davis
 - Ignacio Laguna, PI at LLNL
 - Presenters: Dolores Miao, Cindy Rubio-Gonzalez, UC Davis
- GPU-FPX and FTTN
 - A Low-Overhead tool for Floating-Point Exception Detection in NVIDIA GPUs
 - Feature-Targeted Testing of Numerics
 - Ganesh Gopalakrishnan, Pl at Utah
 - Ang Li, Pl at PNNL
 - Presenters: Ganesh Gopalakrishnan, Xinyi Li, PNNL

Goals: Understand Floating-Point Arithmetic Mitigate III-Effects of FP Error, Exceptions

Numerical errors are rare, rare enough not to care about them all the time, but yet not rare enough to ignore them.

William M. Kahan

Floating-Point Behavior Can Be Confusing

Numerical errors are rare, rare enough not to care about them all the time. but yet not rare enough to ignore them. — William M. Kahan

Examples of recent FP errors

- Simulation in the Large Hadron Collider
 - Need to track charged particles with exquisite precision
 - 10 microns over 10 meters
 - Round-off resulted in missed / mis-identified collisions
 - · (cf. Bailey and Borwein)

C = 0.002604166666666665221063770019327421323396265506744384765625 From a Compute: floor(P/C) Uintah paper by Meng Xeon Humphreys Xeon Expecting Phi 161 msgs 162 msgs

P = 0.42187499999999944488848768742172978818416595458984375

Berzins. Caused MPI

P / C = 161.9999... floor(P/C) = **161** Deadlock

P/C = 162floor(P/C) = **162**

- Intel issues "specification update" for trig library
 - Originally guaranteed to have a one ULP error
 - Measured error was 164-billion ULPs
 - · 37 bits of the mantissa were wrong

(Bruce Dawson's blog)

#define MAX(x, y) $((x) \ge (y)?(x) : (y))$ This is buggy in FP:

This iterates 10 times in FP32 but 11 times in FP64 for $(i=0.0; i < 1.0; i+=0.1) \{ ... \}$

With rising heterogeneity, they can rear their heads more frequently

https://ieeexplore.ieee.org/document/9651291

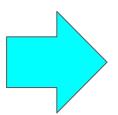
Guarding Numerics Amidst Rising Heterogeneity

Ganesh Gopalakrishnan, Ignacio Laguna, Ang Li, Pavel Panchekha, Cindy Rubio-González, Zachary Tatlock

Software Correctness for HPC Applications (CORRECTNESS) 2021

DOE/NSF Workshop on Correctness in Scientific Computing

https://arxiv.org/pdf/2312.15640


Roadmap of Tutorial

(1) Odyssey

Ben Wang Ed Misback, University of Washington

BASICS

Framework for understanding, and accuracy improvement

(2) Ciel

Cindy
Rubio-Gonzalez
Dolores Miao,
University of
California, Davis

WHAT YOU SEE IS NOT WHAT YOU RUN

How does a compiler change FP Behavior?

Ganesh
Gopalakrishnan
University of
Utah
Xinyi Li
Pacific
Northwest
National
Laboratory

FP EXCEPTIONS

How many occur, and how to surface them, even with closed-source libraries?

TENSOR CORES

How do Tensor Cores Differ Numerically, and How to Discover the Differences?