
LLNL-PRES-802189

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Improving Reliability Through Analyzing and
Debugging Floating-Point Software

Ignacio Laguna
Computer Scientist

Center for Applied Scientific Computing

2020 ECP Annual Meeting, Feb 4, 2020

2
LLNL-PRES-802189

A Hard-To-Debug Case

clang –O1: |e| = 129941.1064990107
clang –O2: |e| = 129941.1064990107
clang –O3: |e| = 129941.1064990107

gcc –O1: |e| = 129941.1064990107
gcc –O2: |e| = 129941.1064990107
gcc –O3: |e| = 129941.1064990107

xlc –O1: |e| = 129941.1064990107
xlc –O2: |e| = 129941.1064990107
xlc –O3: |e| = 144174.9336610391

Early development and porting to new
system (IBM Power8, NVIDIA GPUs)

Hydrodynamics mini application

It took several weeks of effort to debug it

3
LLNL-PRES-802189

Many Factors are Involved in Unexpected Numerical Results

Round-off error

Compiler
(proprietary vs. open-source)

Floating-point
precision

Language semantics
(FP is underspecified in C)

Optimizations
(be careful with –O3)

Architecture
(CPU ≠ GPU)

clang –O1: |e| = 129941.1064990107
clang –O2: |e| = 129941.1064990107
clang –O3: |e| = 129941.1064990107

gcc –O1: |e| = 129941.1064990107
gcc –O2: |e| = 129941.1064990107
gcc –O3: |e| = 129941.1064990107

xlc –O1: |e| = 129941.1064990107
xlc –O2: |e| = 129941.1064990107
xlc –O3: |e| = 144174.9336610391

4
LLNL-PRES-802189

What Floating-Point Code Can Produce Variability?

VARITY tool
Random Test Compiler 1

Compiler 2

Run Result
3.1415

Result
3.1498Run

https://github.com/LLNL/Varity

https://github.com/LLNL/Varity

5
LLNL-PRES-802189

Variability Examples Found by Varity

void compute(double comp,int var_1,double var_2,
double var_3,double var_4,double var_5,double var_6,
double var_7,double var_8,double var_9,double var_10,
double var_11,double var_12,double var_13,
double var_14) {
double tmp_1 = +1.7948E-306;
comp = tmp_1 + +1.2280E305 - var_2 +
ceil((+1.0525E-307 - var_3 / var_4 / var_5));

for (int i=0; i < var_1; ++i) {
comp += (var_6 * (var_7 - var_8 - var_9));

}
if (comp > var_10 * var_11) {
comp = (-1.7924E-320 - (+0.0 / (var_12/var_13)));
comp += (var_14 * (+0.0 - -1.4541E-306));

}
printf("%.17g\n", comp);

}

0.0 5 -0.0 -1.3121E-306 +1.9332E-313 +1.0351E-306
+1.1275E172 -1.7335E113 +1.2916E306 +1.9142E-319
+1.1877E-306 +1.2973E-101 +1.0607E-181 -1.9621E-306
-1.5913E118-O3

$./test-clang
NaN

$./test-nvcc
-2.3139093300000002e-188

Example 1: variability between host and device

Input

clang -O3

nvcc -O3 (V100 GPU)

void compute(double tmp_1, double tmp_2, double tmp_3,
double tmp_4, double tmp_5, double tmp_6) {
if (tmp_1 > (-1.9275E54 * tmp_2 + (tmp_3 - tmp_4 * tmp_5)))
{

tmp_1 = (0 * tmp_6);
}
printf("%.17g\n", tmp_1);

return 0;
}

+1.3438E306 -1.8226E305 +1.4310E306 -1.8556E305 -
1.2631E305 -1.0353E3

$./test-clang
1.3437999999999999e+306

$./test-gcc
1.3437999999999999e+306

$./test-xlc
-0

clang -O0

gcc -O0

xlc -O0

Input

Example 2: variability even with –O0

6
LLNL-PRES-802189

FLiT: Floating-Point Litmus Tester

Multiple Levels:
§ Determine variability-inducing compilations

§ Analyze the tradeoff of reproducibility and
performance

§ Locate variability by identifying files and functions
causing variability

Bisection Method

Michael Bentley, Ian Briggs, Ganesh Gopalakrishnan, Dong H. Ahn, Ignacio Laguna, Gregory L. Lee, and Holger E. Jones. Multi-
Level Analysis of Compiler-Induced Variability and Performance Tradeoffs. In Proceedings of the 28th International

Symposium on High-Performance Parallel and Distributed Computing (HPDC ’19).

7
LLNL-PRES-802189

§ Place printf statements in the code (as many as possible)

§ Programing checks are available in CUDA:

Detecting the Result of Exceptions in a CUDA Program

double x = 0;
x = x/x;
printf("res = %e\n", x);

__device__ int isnan (float a);
__device__ int isnan (double a);

These solutions are not ideal; they require significant programming effort

https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__SINGLE.html
https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__SINGLE.html

8
LLNL-PRES-802189

FPChecker: Automatic Detection of Floating-Point

Exceptions in GPUs

CUDA
Program

LLVM
Compiler

Runtime

device
code

Runtime

Input Exceptions
Report

Compilation phase Execution phase

host
code

Binary

Instrumentation

Runtime

Binary

Runtime

https://github.com/LLNL/FPChecker

https://github.com/LLNL/FPChecker

9
LLNL-PRES-802189

Floating-Point Precision Levels in GPUs Are Increasing

0

0.1

0.2

0.3

0.4

0.5

0.6

2006 2008 2009 2010 2012 2013 2014 2016 2017 2019

1:8
Tesla
FP64
FP32

1:8
Fermi
FP64
FP32

1:24
Kepler
FP64
FP32

1:32
Maxwell
FP64
FP32

1:2
Pascal
FP64
FP32
FP16

1:2
Volta
FP64
FP32
FP16

FP32

FP32, FP64
Compute capability 1.3

10
LLNL-PRES-802189

GPUMixer: Performance-Driven Floating-Point Tuning

for GPU Scientific Applications

kernel1
kernel2
kernel3

Profiling Run
(Optional)

Compiler Static
Analysis

Accuracy-
Driven Analysis

Fast
Mixed-Precision
Configurations

GPU Program GPU program
• Performance speedup
• Accuracy constraints

satisfied

Dynamic analysis

Ignacio Laguna, Paul C. Wood, Ranvijay Singh, Saurabh Bagchi. GPUMixer: Performance-Driven Floating-Point
Tuning for GPU Scientific Applications. ISC High Performance, Frankfurt, Germany, Jun 16-20, 2019 (Best paper)

11
LLNL-PRES-802189

Tutorial on Floating-Point Analysis Tools
http://fpanalysistools.org/

§ Demonstrate several analysis tools

§ Hands-on exercises

§ Cover various important aspects of

floating-point and repro

§ Tutorials:

— LANL, Jan 9th, 2020

— SC19, Denver, Nov 17th, 2019

— PEARC19, Chicago, Jul 30th, 2019

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United

States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or

implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or

Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

