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A Hard-To-Debug Case

clang –O1: |e| = 129941.1064990107 
clang –O2: |e| = 129941.1064990107
clang –O3: |e| = 129941.1064990107

gcc –O1: |e| = 129941.1064990107
gcc –O2: |e| = 129941.1064990107
gcc –O3: |e| = 129941.1064990107

xlc –O1: |e| = 129941.1064990107
xlc –O2: |e| = 129941.1064990107
xlc –O3: |e| = 144174.9336610391

Early development and porting to new 
system (IBM Power8, NVIDIA GPUs)

Hydrodynamics mini application

It took several weeks of effort to debug it
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Many Factors are Involved in Unexpected Numerical Results

Round-off error

Compiler 
(proprietary vs. open-source)

Floating-point 
precision

Language semantics
(FP is underspecified in C)

Optimizations 
(be careful with –O3)

Architecture
(CPU ≠ GPU)

clang –O1: |e| = 129941.1064990107 
clang –O2: |e| = 129941.1064990107
clang –O3: |e| = 129941.1064990107

gcc –O1: |e| = 129941.1064990107
gcc –O2: |e| = 129941.1064990107
gcc –O3: |e| = 129941.1064990107

xlc –O1: |e| = 129941.1064990107
xlc –O2: |e| = 129941.1064990107
xlc –O3: |e| = 144174.9336610391
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What Floating-Point Code Can Produce Variability?

VARITY tool
Random Test Compiler 1

Compiler 2

Run Result
3.1415

Result
3.1498Run

https://github.com/LLNL/Varity

https://github.com/LLNL/Varity
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Variability Examples Found by Varity

void compute(double comp,int var_1,double var_2,
double var_3,double var_4,double var_5,double var_6,
double var_7,double var_8,double var_9,double var_10,
double var_11,double var_12,double var_13,
double var_14) {
double tmp_1 = +1.7948E-306;
comp = tmp_1 + +1.2280E305 - var_2 + 
ceil((+1.0525E-307 - var_3 / var_4 / var_5));

for (int i=0; i < var_1; ++i) {
comp += (var_6 * (var_7 - var_8 - var_9));

}
if (comp > var_10 * var_11) {
comp = (-1.7924E-320 - (+0.0 / (var_12/var_13)));
comp += (var_14 * (+0.0 - -1.4541E-306));

}
printf("%.17g\n", comp);

}

0.0 5 -0.0 -1.3121E-306 +1.9332E-313 +1.0351E-306 
+1.1275E172 -1.7335E113 +1.2916E306 +1.9142E-319 
+1.1877E-306 +1.2973E-101 +1.0607E-181 -1.9621E-306 
-1.5913E118-O3

$ ./test-clang
NaN

$ ./test-nvcc
-2.3139093300000002e-188

Example 1:    variability between host and device

Input

clang -O3

nvcc -O3 (V100 GPU)

void compute(double tmp_1, double tmp_2, double tmp_3, 
double tmp_4, double tmp_5, double tmp_6) {
if (tmp_1 > (-1.9275E54 * tmp_2 + (tmp_3 - tmp_4 * tmp_5)))
{

tmp_1 = (0 * tmp_6);
}
printf("%.17g\n", tmp_1);

return 0;
}

+1.3438E306 -1.8226E305 +1.4310E306 -1.8556E305 -
1.2631E305 -1.0353E3

$ ./test-clang
1.3437999999999999e+306

$ ./test-gcc
1.3437999999999999e+306

$ ./test-xlc
-0

clang -O0

gcc -O0

xlc -O0

Input

Example 2:      variability even with –O0
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FLiT:   Floating-Point Litmus Tester

Multiple Levels:
§ Determine variability-inducing compilations

§ Analyze the tradeoff of reproducibility and 
performance

§ Locate variability by identifying files and functions 
causing variability

Bisection Method

Michael Bentley, Ian Briggs, Ganesh Gopalakrishnan, Dong H. Ahn, Ignacio Laguna, Gregory L. Lee, and Holger E. Jones. Multi-
Level Analysis of Compiler-Induced Variability and Performance Tradeoffs. In Proceedings of the 28th International 

Symposium on High-Performance Parallel and Distributed Computing (HPDC ’19).
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§ Place printf statements in the code (as many as possible)

§ Programing checks are available in CUDA:

Detecting the Result of Exceptions in a CUDA Program

double x = 0;
x = x/x;
printf("res = %e\n", x);

__device__ int isnan ( float  a );
__device__ int isnan ( double  a );

These solutions are not ideal;   they require significant programming effort

https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__SINGLE.html
https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__SINGLE.html
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FPChecker: Automatic Detection of Floating-Point 

Exceptions in GPUs 

CUDA 
Program

LLVM 
Compiler

Runtime

device
code

Runtime

Input Exceptions
Report

Compilation phase Execution phase

host
code

Binary

Instrumentation

Runtime

Binary

Runtime

https://github.com/LLNL/FPChecker

https://github.com/LLNL/FPChecker
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Floating-Point Precision Levels in GPUs Are Increasing
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GPUMixer:  Performance-Driven Floating-Point Tuning 

for GPU Scientific Applications

kernel1
kernel2
kernel3

Profiling Run
(Optional)

Compiler Static 
Analysis

Accuracy-
Driven Analysis

Fast
Mixed-Precision 
Configurations

GPU Program GPU program
• Performance speedup
• Accuracy constraints 

satisfied

Dynamic analysis

Ignacio Laguna, Paul C. Wood, Ranvijay Singh, Saurabh Bagchi. GPUMixer: Performance-Driven Floating-Point 
Tuning for GPU Scientific Applications. ISC High Performance, Frankfurt, Germany, Jun 16-20, 2019 (Best paper)
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Tutorial on Floating-Point Analysis Tools
http://fpanalysistools.org/

§ Demonstrate several analysis tools

§ Hands-on exercises

§ Cover various important aspects of 

floating-point and repro

§ Tutorials:

— LANL, Jan 9th, 2020

— SC19, Denver, Nov 17th, 2019

— PEARC19, Chicago, Jul 30th, 2019
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